Background: Merino and Merino-derived sheep breeds have been widely distributed across the world, both as purebred and admixed populations. They represent an economically and historically important genetic resource which over time has been used as the basis for the development of new breeds. In order to examine the genetic influence of Merino in the context of a global collection of domestic sheep breeds, we analyzed genotype data that were obtained with the OvineSNP50 BeadChip (Illumina) for 671 individuals from 37 populations, including a subset of breeds from the Sheep HapMap dataset.
Results: Based on a multi-dimensional scaling analysis, we highlighted four main clusters in this dataset, which corresponded to wild sheep, mouflon, primitive North European breeds and modern sheep (including Merino), respectively. The neighbor-network analysis further differentiated North-European and Mediterranean domestic breeds, with subclusters of Merino and Merino-derived breeds, other Spanish breeds and other Italian breeds. Model-based clustering, migration analysis and haplotype sharing indicated that genetic exchange occurred between archaic populations and also that a more recent Merino-mediated gene flow to several Merino-derived populations around the world took place. The close relationship between Spanish Merino and other Spanish breeds was consistent with an Iberian origin for the Merino breed, with possible earlier contributions from other Mediterranean stocks. The Merino populations from Australia, New Zealand and China were clearly separated from their European ancestors. We observed a genetic substructuring in the Spanish Merino population, which reflects recent herd management practices.
Conclusions: Our data suggest that intensive gene flow, founder effects and geographic isolation are the main factors that determined the genetic makeup of current Merino and Merino-derived breeds. To explain how the current Merino and Merino-derived breeds were obtained, we propose a scenario that includes several consecutive migrations of sheep populations that may serve as working hypotheses for subsequent studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4536749 | PMC |
http://dx.doi.org/10.1186/s12711-015-0139-z | DOI Listing |
Animals (Basel)
December 2024
MERAGEM (AGR-158) Research Group, Department of Genetics, University of Córdoba, CN IV KM 396, 14014 Cordoba, Spain.
The Spanish Merino is the most significant sheep breed globally due to its economic and cultural importance in human history. It has also had a substantial influence on the development of other Merino and Merino-derived breeds. Historical sources indicate that crossbreeding to produce finer, higher-quality wool was already taking place in the south of the Iberian Peninsula during the Roman era.
View Article and Find Full Text PDFGenes (Basel)
June 2024
MERAGEM Research Group, Department of Genetics, University of Córdoba, CN IV KM 396, 17071 Córdoba, Spain.
The native Spanish Merino breed was the founder of all the other Merino and Merino-derived breeds worldwide. Despite the fact that this breed was created and improved to produce the highest quality fine wool, the global wool market crisis led to the wholescale crossing of most of the herds with breeds for meat purposes. Nevertheless, there are still some purebred animals with a high potential for producing quality wool.
View Article and Find Full Text PDFGenet Sel Evol
April 2023
Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy.
Front Genet
January 2023
Agricultural Research Council Biotechnology Platform, Private Bag X5 Onderstepoort, Pretoria, South Africa.
Merino sheep are a breed of choice across the world, popularly kept for their wool and mutton value. They are often reared as a pure breed or used in crossbreeding and are a common component in synthetic breed development. This study evaluated genetic diversity, population structure, and breed divergence in 279 animals of Merino and Merino-based sheep breeds in South Africa using the Illumina Ovine SNP 50K BeadChip.
View Article and Find Full Text PDFAnim Biosci
January 2023
Department of Animal Breeding, Institute of Animal Science, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Herceghalom, 2053, Hungary.
Objective: In this study, we aimed to position the Hungarian Merino among other Merino-derived sheep breeds, explore the characteristics of our sampled animals' genetic similarity network within the breed, and highlight single nucleotide polymorphisms (SNPs) associated with daily weight-gain.
Methods: Hungarian Merino (n = 138) was genotyped on Ovine SNP50 Bead Chip (Illumina, San Diego, CA, USA) and positioned among 30 Merino and Merino-derived breeds (n = 555). Population characteristics were obtained via PLINK, SVS, Admixture, and Treemix software, within-breed network was analysed with python networkx 2.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!