Staphylococcal manipulation of host immune responses.

Nat Rev Microbiol

Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA.

Published: September 2015

Staphylococcus aureus, a bacterial commensal of the human nares and skin, is a frequent cause of soft tissue and bloodstream infections. A hallmark of staphylococcal infections is their frequent recurrence, even when treated with antibiotics and surgical intervention, which demonstrates the bacterium's ability to manipulate innate and adaptive immune responses. In this Review, we highlight how S. aureus virulence factors inhibit complement activation, block and destroy phagocytic cells and modify host B cell and T cell responses, and we discuss how these insights might be useful for the development of novel therapies against infections with antibiotic resistant strains such as methicillin-resistant S. aureus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4625792PMC
http://dx.doi.org/10.1038/nrmicro3521DOI Listing

Publication Analysis

Top Keywords

immune responses
8
staphylococcal manipulation
4
manipulation host
4
host immune
4
responses staphylococcus
4
staphylococcus aureus
4
aureus bacterial
4
bacterial commensal
4
commensal human
4
human nares
4

Similar Publications

The human malaria parasite Plasmodium falciparum evolved from a parasite that infects gorillas, termed Plasmodium praefalciparum. The sialic acids on glycans on the surface of erythrocytes differ between humans and other apes. It has recently been shown that the P.

View Article and Find Full Text PDF

Chronic inflammation in the tumour microenvironment (TME) via Th2-polarisation promotes melanoma progression and metastasis, making it a target for immunotherapy. Interleukin (IL)-4 is considered essential for Th2-polarisation in the TME; however, its source remains unknown. Basophils have been postulated as one of its sources.

View Article and Find Full Text PDF

The Interaction Between Vasculogenic Mimicry and the Immune System: Mechanistic Insights and Dual Exploration in Cancer Therapy.

Cell Prolif

January 2025

Department of Nursing, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.

Vasculogenic mimicry (VM) represents a novel form of angiogenesis discovered in numerous malignant tumours in recent years. Unlike traditional angiogenesis, VM facilitates tumour blood supply independently of endothelial cells by enabling tumour cells to form functional vascular networks. This phenomenon, where tumour cells replace endothelial cells to form tubular structures, plays a pivotal role in tumour growth and metastasis.

View Article and Find Full Text PDF

Immunomodulatory effect of efferocytosis at the maternal-fetal interface.

Cell Commun Signal

January 2025

Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.

Efferocytosis is a mechanism by which phagocytes efficiently clear apoptotic cells, averting their secondary necrosis and the subsequent release of potentially immunogenic or cytotoxic substances that can trigger strong immune and inflammatory responses. During efferocytosis, the metabolic pathways of phagocytes are transformed, which, along with the catabolism of apoptotic cargo, can affect their function and inflammatory state. Extensive apoptosis occurs during placental development, and some studies reported the immunomodulatory effects of efferocytosis at the maternal-fetal interface.

View Article and Find Full Text PDF

Rescue RM/CS-AKI by blocking strategy with one-dose anti-myoglobin RabMAb.

Nat Commun

January 2025

School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China.

Rhabdomyolysis or Crush syndrome-related AKI (RM/CS-AKI) has high mortality, and there is no effective early on-site treatment method. The critical pathogenic factor of RM/CS-AKI is the excessive free myoglobin (Mb) in blood circulation. Here, based on the concept of creating a "mobile barrier", we develop an anti-Mb rabbit monoclonal antibody (RabMAb) with high specificity, affinity, stability, and broad species reactivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!