N-Heterocyclic Carbene-Palladium(II)-1-Methylimidazole Complex Catalyzed Direct C-H Bond Arylation of Benzo[b]furans with Aryl Chlorides.

J Org Chem

College of Chemistry and Materials Engineering, Wenzhou University , Chashan University Town, Wenzhou, Zhejiang Province 325035, People's Republic of China.

Published: September 2015

The first example of sole direct C-H bond arylation of benzo[b]furans with aryl chlorides was achieved catalyzed by a well-defined NHC-Pd(II)-Im complex. Under the suitable conditions, all reactions involving kinds of benzo[b]furans and (hetero)aryl chlorides proceeded well to give the desired C2-arylated benzo[b]furans in sole regioselectivity in acceptable to high yields, providing an efficient and economic pathway for the direct C2-H bond arylation of benzo[b]furans.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.5b01544DOI Listing

Publication Analysis

Top Keywords

bond arylation
12
arylation benzo[b]furans
12
direct c-h
8
c-h bond
8
benzo[b]furans aryl
8
aryl chlorides
8
benzo[b]furans
5
n-heterocyclic carbene-palladiumii-1-methylimidazole
4
carbene-palladiumii-1-methylimidazole complex
4
complex catalyzed
4

Similar Publications

Late-Stage C-H Functionalization of Dehydroalanine-Containing Peptides with Arylthianthrenium Salts and Its Application in Synthesis of Tentoxin Analogue.

Org Lett

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.

Dehydrophenylalanine has a characteristic unsaturated double bond that makes it indispensable in the context of peptides and proteins. In this study, we report the Pd-catalyzed C(sp)-H arylation of dehydroalanine-containing peptides with arylthianthrenium salts under mild and base free conditions, which provides efficient access to dehydrophenylalanine-containing peptides. This approach enables the efficient coupling of different drug scaffolds and bioactive molecules to the peptides.

View Article and Find Full Text PDF

Monoanionic, bidentate-auxiliary-directed, cobalt-catalyzed C-H bond functionalization has become a very useful tool in organic synthesis. A comprehensive investigation into isolated organometallic intermediates and their reactivity within the catalytic cycle is lacking. We report here mechanistic studies of cobalt-catalyzed, aminoquinoline-directed C(sp)-H bond functionalization.

View Article and Find Full Text PDF

C-H activation is the most direct way of functionalizing organic molecules. Many advances in this field still require specific directing groups to achieve the necessary activity and selectivity. Developing C-H activation reactions directed by native functional groups is essential for their broad application in synthesis.

View Article and Find Full Text PDF

Palladium-catalyzed -arylation of (hetero)aryl chlorides with pyrroles and their analogues.

Org Biomol Chem

January 2025

School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China.

We present a mild and efficient method for the arylation of N-H heteroarenes using a low-loading Pd/keYPhos catalyst (0.8 mol%). This approach employs inexpensive and structurally diverse aryl chlorides as electrophiles in reactions with indoles, pyrroles, and carbazole, enabling the construction of a wide range of -arylated products.

View Article and Find Full Text PDF

Palladium(II)-catalyzed C-H functionalization has attracted considerable attention as a pathway to late-stage modification of peptides. Herein, we report the Pd-catalyzed C(sp3)-H arylation of peptides directed by an amidoxime ether, which can be easily incorporated into peptides at any amide bond. Site- and stereoselective arylation of peptides has been achieved, including an unprecedented example of C-H arylation of an internal residue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!