Colloid particle deposition was applied in order to characterize human serum albumin (HSA) monolayers on mica adsorbed under diffusion transport at pH 3.5. The surface concentration of HSA was determined by a direct AFM imaging of single molecules. The electrokinetic characteristics of the monolayers for various ionic strength were done by in situ streaming potential measurements. In this way the mean-field zeta potential of monolayers was determined. It was shown that the initially negative potential changed its sign for HSA surface concentrations above 2800μm(-2) that was interpreted as overcharging effect. The monolayers were also characterized by the colloid deposition method where negatively charged polystyrene particles, 810nm in diameter were used. The kinetics of particle deposition and their maximum coverage were determined as a function of the HSA monolayer surface concentration. An anomalous deposition of particles on substrates exhibiting a negative zeta potential was observed, which contradicts the mean-field theoretical predictions. This effect was quantitatively interpreted in terms of the random site sequential adsorption model. It was shown that efficient immobilization of particles only occurs at adsorption sites formed by three and more closely adsorbed HSA molecules. These results can be exploited as useful reference data for the analysis of deposition phenomena of bioparticles at protein monolayers that has practical significance for the regulation of the bioadhesive properties of surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2015.07.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!