Chip calorimetry for the sensitive identification of hexogen and pentrite from their decomposition inside copper oxide nanoparticles.

Anal Chem

Nanomatériaux pour les Systèmes Sous Sollicitations Extrêmes (NS3E), UMR 3208 CNRS/ISL/UNISTRA, French-German Research Institute of Saint-Louis, 68301 Saint-Louis, France.

Published: September 2015

Smart detection systems for explosive sensors are designed both to detect explosives in the air at trace level and identify the threat for a specific response. Following this need we have succeeded in using microthermal analysis to sensitively identify and discriminate between RDX and PETN explosive vapors at trace level. Once the explosive vapor is trapped in a porous material, heating the material at a fast rate of 3000 K/s up to 350 °C will result in a thermal pattern specifically corresponding to the explosive and its interaction with the porous material. The explosive signatures obtained make it possible to simultaneously identify the presence and the nature of the explosive vapor in just a few milliseconds. Therefore, this also allows the development of multitarget devices using porous material for capturing the vapor combined with microthermal analysis for fast detection and identification. So far it is the first time that chip calorimetry has been used to characterize and identify explosives in vapor state.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.5b02773DOI Listing

Publication Analysis

Top Keywords

porous material
12
chip calorimetry
8
trace level
8
microthermal analysis
8
explosive vapor
8
explosive
6
calorimetry sensitive
4
sensitive identification
4
identification hexogen
4
hexogen pentrite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!