The GntR-family transcription regulator, DasR, was previously identified as pleiotropic, controlling the primary amino sugar N-acetylglucosamine (GlcNAc) and chitin metabolism in Saccharopolyspora erythraea and Streptomyces coelicolor. Due to the remarkable regulatory impact of DasR on antibiotic production and development in the model strain of S. coelicolor, we here identified and characterized the role of DasR to secondary metabolite production and morphological development in industrial erythromycin-producing S. erythraea. The physiological studies have shown that a constructed deletion of dasR in S. erythraea resulted in antibiotic, pigment, and aerial hyphae production deficit in a nutrient-rich condition. DNA microarray assay, combined with quantitative real-time reverse transcription PCR (qRT-PCR), confirmed these results by showing the downregulation of the genes relating to secondary metabolite production in the dasR null mutant. Notably, electrophoretic mobility shift assays (EMSA) showed DasR as being the first identified regulator that directly regulates the pigment biosynthesis rpp gene cluster. In addition, further studies indicated that GlcNAc, the major nutrient signal of DasR-responsed regulation, blocked secondary metabolite production and morphological development. The effects of GlcNAc were shown to be caused by DasR mediation. These findings demonstrated that DasR is an important pleiotropic regulator for both secondary metabolism and morphological development in S. erythraea, providing new insights for the genetic engineering of S. erythraea with increased erythromycin production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-015-6892-7 | DOI Listing |
Plant Cell Physiol
January 2025
Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011 Kyoto, Japan.
Lotus japonicus-ROOT HAIR LESS1-LIKE1 (LRL1) of Arabidopsis thaliana encodes a basic helix-loop-helix (bHLH) transcription factor (TF) involved in root hair development. Root hair development is regulated by an elaborate transcriptional network, in which GLABRA2 (GL2), a key negative regulator, directly represses bHLH TF genes, including LRL1 and ROOT HAIR DEFECTIVE6 (RHD6). Although RHD6 and its paralogous TFs have been shown to connect downstream to genes involved in cell morphological events such as endomembrane and cell wall modification, the network downstream of LRL1 remains elusive.
View Article and Find Full Text PDFInt J Radiat Biol
January 2025
Department of Horticulture, Patuakhali Science and Technology University, Patuakhali, Bangladesh.
Purpose: The study focused on developing a rapid PCR-based detection method and employing gamma irradiation techniques to manage , aiming to produce brown rot-free export-quality potatoes. This initiative seeks to enhance potato exports from Bangladesh.
Materials And Methods: Samples of potato tubers and soil were collected from various commercially significant potato-growing areas, resulting in a total of 168 isolates from potato tubers and soil across 12 regions.
J Physiol
January 2025
Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
The mechanisms that drive placental dysfunction in pregnancies complicated by hypoxia and fetal growth restriction remain poorly understood. Changes to mitochondrial respiration contribute to cellular dysfunction in conditions of hypoxia and have been implicated in the pathoaetiology of pregnancy complications, such as pre-eclampsia. We used bespoke isobaric hypoxic chambers and a combination of functional, molecular and imaging techniques to study cellular metabolism and mitochondrial dynamics in sheep undergoing hypoxic pregnancy.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Children's Medical Center, Department of Pediatric Neurology, Peking University First Hospital, Beijing, China.
Aims: Alexander disease (AxD) is a leukodystrophy caused by mutations in the astrocytic filament gene GFAP. There are currently no effective treatments for AxD. Previous studies have rarely established AxD models with the patient's original GFAP mutations.
View Article and Find Full Text PDFAnn Bot
January 2025
Seed Biology and Technology Group, Department of Biological Sciences, Royal Holloway University of London, TW20 0EX, Egham, United Kingdom.
The biomechanical, morphological and ecophysiological properties of plant seed/fruit structures are adaptations that support survival in unpredictable environments. High phenotypic variability of noxious and invasive weed species such as Raphanus raphanistrum (wild radish) allow diversification into new environmental niches. Dry indehiscent fruits (thick and lignified pericarp [fruit coat] enclosing seeds) have evolved many times independently.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!