The pharmacology of bitter taste receptors and their role in human airways.

Pharmacol Ther

Laboratoire de Pharmacologie, UPRES EA220, Hôpital Foch, 11 rue Guillaume Lenoir, 92150 Suresnes, France; Université Versailles Saint Quentin en Yvelines, UFR Sciences de la Santé, 2 avenue de la source de la Bièvre, 78180 Montigny-le-Bretonneux, France. Electronic address:

Published: November 2015

The receptors involved in bitter taste perception (bitter taste receptors--T2Rs) constitute a family of G-protein-coupled receptors, of which around 29 subtypes have been identified in humans. T2R expression was initially thought to be confined to the oral cavity but has recently been described in a range of other tissues (such as the heart, gut, nasal cavity and lungs) and cell types (chemosensory, smooth muscle, endothelial, epithelial and inflammatory cells). Although it is still not clear whether endogenous T2R agonists exist, the T2R receptors recognize many natural and synthetic compounds, such as the acyl-homoserine lactones produced by bacteria, caffeine, chloroquine, and erythromycin. In the upper airways, T2Rs are involved in neurogenic inflammation and bacterial clearance. Their known effects in the lungs are exerted at three different levels. Firstly, T2R agonists increase the beating frequency of cilia on epithelial cells. Secondly, the T2Rs induce bronchial smooth muscle cells to relax. Thirdly, the T2R receptors expressed on immune cells (such as macrophages and mast cells) modulate production of pro-inflammatory mediators. Furthermore, T2R agonists are effective in inhibiting lung inflammation or smooth muscle contraction in ex vivo and asthma animal models, and are known to be involved in bacterial killing in the nasal cavity and enhancing lung function in humans. This review focuses on the pharmacology and physiological functions of T2R receptors in the upper and lower airways. It presents recently acquired knowledge suggesting that T2Rs may become valuable drug targets in the treatment of diseases such as asthma and chronic rhinosinusitis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pharmthera.2015.08.001DOI Listing

Publication Analysis

Top Keywords

bitter taste
12
smooth muscle
12
t2r agonists
12
t2r receptors
12
nasal cavity
8
t2r
7
receptors
6
cells
5
pharmacology bitter
4
taste receptors
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!