Plants are attacked by both above- and belowground herbivores. Toxic secondary compounds are part of the chemical defense arsenal of plants against a range of antagonists, and are subject to genetic variation. Plants also produce primary metabolites (amino acids, nutrients, sugars) that function as essential compounds for growth and survival. Wild cabbage populations growing on the Dorset coast of the UK exhibit genetically different chemical defense profiles, even though they are located within a few kilometers of each other. As in other Brassicaceae, the defensive chemicals in wild cabbages constitute, among others, secondary metabolites called glucosinolates. Here, we used five Dorset populations of wild cabbage to study the effect of belowground herbivory by the cabbage root fly on primary and secondary chemistry, and whether differences in chemistry affected the performance of the belowground herbivore. There were significant differences in total root concentrations and chemical profiles of glucosinolates, amino acids, and sugars among the five wild cabbage populations. Glucosinolate concentrations not only differed among the populations, but also were affected by root fly herbivory. Amino acid and sugar concentrations also differed among the populations, but were not affected by root fly herbivory. Overall, population-related differences in plant chemistry were more pronounced for the glucosinolates than for amino acids and sugars. The performance of the root herbivore did not differ among the populations tested. Survival of the root fly was low (<40%), suggesting that other belowground factors may override potential differences in effects related to primary and secondary chemistry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568014PMC
http://dx.doi.org/10.1007/s10886-015-0605-7DOI Listing

Publication Analysis

Top Keywords

wild cabbage
16
root fly
16
amino acids
12
belowground herbivore
8
primary secondary
8
chemical defense
8
cabbage populations
8
glucosinolates amino
8
acids sugars
8
concentrations differed
8

Similar Publications

Alaska's Flora as a Treatment for Cancer.

Int J Biopharm Sci

December 2024

Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham NH 03824.

Cancer is an extraordinarily complex illness, with many tumors ultimately developing resistance to the currently available therapeutics. This highlights a need for the discovery of new anticancer medicines. Natural products have been utilized for centuries by the indigenous people of Alaska for both spiritual and medicinal purposes and have traditionally been administered as medicine for a wide range of ailments from the common cold to cancer.

View Article and Find Full Text PDF

BrCYP71 mutation resulted in stay-green in pak choi (Brassica rapa L. ssp. chinensis).

Theor Appl Genet

January 2025

College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.

BrCYP71 encoding multifunctional oxidase was mapped using BSA-Seq and linkage analysis, and its function in stay-green of pak choi was verified through Arabidopsis heterologous transgenic experiment. Stay-green refers to the phenomenon that plant leaves remain green during senescence and even after death, which is of great significance for improving the commerciality of leafy vegetables during storage or transportation and extending their shelf life. In this study, we identified a stay-green mutant of pak choi and named it nye2.

View Article and Find Full Text PDF

Rapeseed ( L.) is known for its high-quality seed oil and protein content. However, its use in animal feed is restricted due to antinutritional factors present in the seedcake, with sinapine being one of the main compounds that reduces palatability.

View Article and Find Full Text PDF

Climate change, drought, and soil salinization present huge limitations to global agricultural output, which threatens food security. This necessitates the cultivation and domestication of wild edible halophytes as alternatives to mainstream food crops, especially in arid and semi-arid regions. is one of the under-researched and underutilized edible halophytes native to South Africa.

View Article and Find Full Text PDF

Background: The anthosphere, also known as the floral microbiome, is a crucial component of the plant reproductive system. Therefore, understanding the anthospheric microbiome is essential to explore the diversity, interactions, and functions of wildflowers that coexist in natural habitats. We aimed to explore microbial interaction mechanisms and key drivers of microbial community structures using 144 flower samples from 12 different wild plant species inhabiting the same natural environment in South Korea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!