Purpose: As genome-scale sequencing is increasingly applied in clinical scenarios, a wide variety of genomic findings will be discovered as secondary or incidental findings, and there is debate about how they should be handled. The clinical actionability of such findings varies, necessitating standardized frameworks for a priori decision making about their analysis.

Methods: We established a semiquantitative metric to assess five elements of actionability: severity and likelihood of the disease outcome, efficacy and burden of intervention, and knowledge base, with a total score from 0 to 15.

Results: The semiquantitative metric was applied to a list of putative actionable conditions, the list of genes recommended by the American College of Medical Genetics and Genomics (ACMG) for return when deleterious variants are discovered as secondary/incidental findings, and a random sample of 1,000 genes. Scores from the list of putative actionable conditions (median = 12) and the ACMG list (median = 11) were both statistically different than the randomly selected genes (median = 7) (P < 0.0001, two-tailed Mann-Whitney test).

Conclusion: Gene-disease pairs having a score of 11 or higher represent the top quintile of actionability. The semiquantitative metric effectively assesses clinical actionability, promotes transparency, and may facilitate assessments of clinical actionability by various groups and in diverse contexts.Genet Med 18 5, 467-475.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4752935PMC
http://dx.doi.org/10.1038/gim.2015.104DOI Listing

Publication Analysis

Top Keywords

semiquantitative metric
16
clinical actionability
16
genome-scale sequencing
8
list putative
8
putative actionable
8
actionable conditions
8
actionability
6
clinical
5
findings
5
semiquantitative
4

Similar Publications

Value of multi-parameter I-MIBG scintigraphy in the differential diagnosis of Parkinson's disease.

EJNMMI Res

January 2025

Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing, China.

Background: I-MIBG scintigraphy plays a significant role in diagnosing Parkinson's disease (PD), with most studies primarily targeting cardiac uptake and relying on traditional ratio-based parameters for assessment. However, due to variations in scanning conditions and image processing methodologies, the clinical utility of different parameters remains a subject of debate. This study aims to evaluate the diagnostic accuracy of multi-parameter I-3-Iodobenzylguanidine (MIBG) scintigraphy and to identify the most reliable metrics for distinguishing PD from Parkinson-plus syndromes.

View Article and Find Full Text PDF

Evaluation of Local Tumor Outcomes Following Microwave Ablation of Colorectal Liver Metastases Using CT Imaging: A Comparison of Visual versus Quantitative Methods.

Radiol Imaging Cancer

January 2025

From the Department of Radiology, Royal Marsden Hospital NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, England (J.D.S., L.K., L.P., J.M., N.K., D.M.K., E.J.); Institute of Cancer Research, London, England (N.P., D.M.K.); and Department of Radiology and Nuclear Medicine, Rijnstate Hospital, Arnhem, the Netherlands (W.O.).

Purpose To compare visual versus quantitative ablation confirmation for identifying local tumor progression and residual tumor following microwave ablation (MWA) of colorectal liver metastases (CRLM). Materials and Methods This retrospective study included patients undergoing MWA of CRLM from October 2014 to February 2018. Two independent readers visually assessed pre- and postprocedure images and semiquantitatively scored for incomplete ablation, using a six-point Likert scale, and extracted quantitative imaging metrics of minimal ablative margin (MAM) and percentage of tumor outside of the ablation zone, using both rigid and deformable registration.

View Article and Find Full Text PDF

Background And Purpose: Magnetic Resonance Imaging is widely used to assess disease burden in multiple sclerosis (MS). This study aimed to evaluate the effectiveness of a commercially available k-nearest neighbors (k-NN) software in quantifying white matter lesion (WML) burden in MS. We compared the software's WML quantification to expert radiologists' assessments.

View Article and Find Full Text PDF

Ultrasound Lung Aeration Map via Physics-Aware Neural Operators.

ArXiv

January 2025

Department of Computing and Mathematical Sciences, California Institute of Technology, 1200 E California Blvd, Pasadena, 91125, CA, United States.

Lung ultrasound is a growing modality in clinics for diagnosing and monitoring acute and chronic lung diseases due to its low cost and accessibility. Lung ultrasound works by emitting diagnostic pulses, receiving pressure waves and converting them into radio frequency (RF) data, which are then processed into B-mode images with beamformers for radiologists to interpret. However, unlike conventional ultrasound for soft tissue anatomical imaging, lung ultrasound interpretation is complicated by complex reverberations from the pleural interface caused by the inability of ultrasound to penetrate air.

View Article and Find Full Text PDF

Background: Brain tumors exhibit diverse genetic landscapes and hemodynamic properties, influencing diagnosis and treatment outcomes.

Purpose: To explore the relationship between MRI perfusion metrics (rCBV, rCBF), genetic markers, and contrast enhancement patterns in gliomas, aiming to enhance diagnostic accuracy and inform personalized therapeutic strategies. Additionally, other radiological features, such as the T2/FLAIR mismatch sign, are evaluated for their predictive utility in IDH mutations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!