Use of larger diameter femoral heads has emerged as a promising strategy to reduce the risk of dislocation after total hip arthroplasty, but thinning the walls of cross-linked ultra-high-molecular-weight polyethylene (UHMWPE) acetabular liners to accommodate these larger heads may compromise the locking mechanism of the liner. The purpose of this study was to test the mechanical integrity of the locking mechanism in cross-linked and re-melted UHMWPE acetabular components with reduced wall thickness. The locking mechanism of cross-linked (100 kGy/re-melted) acetabular liners in sizes 50/28, 50/36, and 52/36 mm of 1 design was evaluated by lever-out tests and torsion tests. Torsion tests were performed at 2 angles to isolate the liner's locking tabs independent of the contribution of its central post. Lever-out testing demonstrated nominally reduced failure strength in 50/36-mm liners (13.3 N · m) compared with 50/28-mm liners (12.3 N · m; P=.0502), whereas the lever-out strength of 52/36-mm liners was 12.2±0.94 N · m. Failure torques were similar between 50/28- and 50/36-mm liners at 45° and 90°, but the failure torque of size 52/36-mm liners was significantly higher at each angle. The use of larger diameter femoral heads does not compromise the locking mechanism of thinned MicroSeal (Signal Medical Corp, Marysville, Michigan) acetabular liners. Use of a cross-linked UHMWPE acetabular liner, with a locking mechanism that is not compromised when the liner is thinned to a thickness of at least 2.86 mm, appears to be a biomechanically sound construct when articulated with large diameter femoral heads.

Download full-text PDF

Source
http://dx.doi.org/10.3928/01477447-20150804-62DOI Listing

Publication Analysis

Top Keywords

locking mechanism
20
acetabular liners
16
diameter femoral
12
femoral heads
12
uhmwpe acetabular
12
liners
9
larger diameter
8
heads compromise
8
compromise locking
8
mechanism cross-linked
8

Similar Publications

Synergistic oxidative modification and covalent cross-linking for the construction of sesbania gum-based high efficiency dust suppression foam sols.

Int J Biol Macromol

January 2025

College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China.

To effectively utilize sesbania gum in coal dust control and address the limitations of excessive viscosity and mediocre strength, oxidation treatment was used to improve its fluidity. Polyvinyl alcohol (PVA) and sodium trimetaphosphite (STMP) were used to enhance oxidized sesbania gum OSG, and crosslinking technology was used to improve its mechanical stability. This study developed a novel foam dust suppressant OSG-PVA/SDBS by response surface design, and the optimized dust suppressant material exhibited excellent adhesion and curing properties.

View Article and Find Full Text PDF

Purpose Of Review: Numerous scope-related innovations have taken place in the field of endourology. The presented analytical review is aimed at studying the technical innovations of the single-use digital flexible ureteroscopes. In November 2024, a comprehensive search was done for information on latest disposable flexible digital ureteroscopes, as well as their various unique characteristics.

View Article and Find Full Text PDF

Anti-gene oligonucleotide clamps invade dsDNA and downregulate expression.

Mol Ther Nucleic Acids

December 2024

Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, 14152 Huddinge, Stockholm, Sweden.

Anti-gene oligonucleotides belong to a group of therapeutic compounds, which, in contrast to antisense oligonucleotides, bind to DNA. Clamp anti-gene oligonucleotides bind through a double-stranded invasion mechanism. With two arms connected by a linker, they hybridize to one of the DNA strands forming Watson-Crick and Hoogsteen hydrogen bonds.

View Article and Find Full Text PDF

Although mixing and matching components is a common, safe, and well-documented practice in hip revision surgery, our extensive search indicates that it has not been previously reported for shoulder arthroplasty. This case report presents the use of mixed implants in shoulder revision surgery to reduce morbidity and address flaws in the initial implant design. We describe a case of a patient with multiple epiphyseal dysplasia who was treated for osteoarthritis in his left shoulder with an anatomic shoulder replacement in 2014.

View Article and Find Full Text PDF

Perception and production of music and speech rely on auditory-motor coupling, a mechanism which has been linked to temporally precise oscillatory coupling between auditory and motor regions of the human brain, particularly in the beta frequency band. Recently, brain imaging studies using magnetoencephalography (MEG) have also shown that accurate auditory temporal predictions specifically depend on phase coherence between auditory and motor cortical regions. However, it is not yet clear whether this tight oscillatory phase coupling is an intrinsic feature of the auditory-motor loop, or whether it is only elicited by task demands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!