We have created models to predict cleavage sites for several human proteases including caspase-1, caspase-3, caspase-6, caspase-7, cathepsin B, cathepsin D, cathepsin G, cathepsin K, cathepsin L, elastase-2, granzyme A, granzyme B, matrix metallopeptidase-2 (MMP2), MMP7, MMP9, thrombin, and trypsin-1. Rather than representing the sequence pattern around the potential cleavage site through a series of flags with each flag representing one of the 20 standard amino acids, we first represent each amino acid by its calculated properties. For these calculated properties, we use validated cheminformatic descriptors, such as molecular weight, logP, and polar surface area, of the individual amino acids. Finally, the cleavage site-specific descriptors are calculated through various combinations of the individual amino acid descriptors for the residues surrounding the cleavage site. Some of these combinations do not take into account the location of the residue, as long as it is in a prescribed neighborhood of the potential cleavage site, whereas others are sensitive to the precise order of the residues in the sequence. The key advantage of this approach is that it allows one to perform meaningful calculations with nonstandard amino acids for which little or no data exists. Finally, using both docking and molecular dynamics simulations, we examine the potential for and limitations of protease crystal structures to impact the design of proteolytically stable peptides.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bip.22711DOI Listing

Publication Analysis

Top Keywords

cathepsin cathepsin
16
cleavage site
12
amino acids
12
potential cleavage
8
amino acid
8
calculated properties
8
individual amino
8
cleavage
5
cathepsin
5
amino
5

Similar Publications

Porcine deltacoronavirus (PDCoV), also known as HKU15, is a swine enteropathogenic virus that is believed to have originated in birds. PDCoV belongs to the genus Deltacoronavirus (DCoV), the members of which have mostly been identified in diverse avian species. We recently reported that chicken or porcine aminopeptidase N (APN), the major cellular receptor for PDCoV, can mediate cellular entry via three pseudotyped retroviruses displaying spike proteins from three avian DCoVs (HKU11, HKU13, and HKU17).

View Article and Find Full Text PDF

Vitiligo is a complex autoimmune disease characterized by the loss of melanocytes, leading to skin depigmentation. Despite advances in understanding its genetic and molecular basis, the precise mechanisms driving vitiligo remain elusive. Integrating multiple layers of omics data can provide a comprehensive view of disease pathogenesis and identify potential therapeutic targets.

View Article and Find Full Text PDF

Although cathepsin S is transported from the spleen to the liver, where it cleaves collagen XVIII to produce endostatin and plays a critical role in the onset of early liver fibrosis, the relationship between liver fibrosis and spleen function remains underexplored. Given the roles of phosphorylation in disease, understanding its regulatory mechanism in early liver fibrosis is crucial. Despite advances in mass spectrometry enhancing phosphoproteomics, its application is limited by small clinical samples and subtle protein changes.

View Article and Find Full Text PDF

Systematic review of amyloid-beta clearance proteins from the brain to the periphery: implications for Alzheimer's disease diagnosis and therapeutic targets.

Neural Regen Res

January 2025

Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, Liaoning Province, China.

Amyloid-beta clearance plays a key role In the pathogenesis of Alzheimer's disease. However, the variation in functional proteins involved in amyloid-beta clearance and their correlation with amyloid-beta levels remain unclear. In this study, we conducted meta-analyses and a systematic review using studies from the PubMed, Embase, Web of Science, and Cochrane Library databases, including journal articles published from inception to June 30, 2023.

View Article and Find Full Text PDF

Fungal evasion of immunity involves blocking the cathepsin-mediated cleavage maturation of the danger-sensing protease.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.

Entomopathogenic fungi play a critical role in regulating insect populations, and representative species from the and genera have been developed as eco-friendly biocontrol agents for managing agricultural insect pests. Relative to the advances in understanding antifungal immune responses in , knowledge of how fungi evade insect immune defenses remains limited. In this study, we report the identification and characterization of a virulence-required effector Fkp1 in .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!