Metal/Phthalocyanine Hybrid Interface States on Ag(111).

J Phys Chem Lett

Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States.

Published: May 2014

A phthalocyanine/Ag(111) interface state is observed for the first time using time- and angle-resolved two-photon photoemission. For monolayer films of metal-free (H2Pc) and iron phthalocyanine (FePc) on Ag(111), the state exists 0.23 ± 0.03 and 0.31 ± 0.03 eV above the Fermi level, respectively. Angle-resolved spectra show the state to be highly dispersive with an effective mass of 0.50 ± 0.15 me for H2Pc and 0.67 ± 0.14 me for FePc. Density functional theory calculations on the H2Pc/Ag(111) surface allow us to characterize this state as being a hybrid state resulting from the interaction between the unoccupied molecular states of the phthalocyanine ligand and the Shockley surface state present on the bare Ag(111) surface. This work, when taken together with the extensive literature on the 3,4,9,10-perylene tetracarboxylic dianhydride/Ag interface state, provides compelling evidence that the hybridization of metal surface states with molecular electronic states is a general phenomenon.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jz500571zDOI Listing

Publication Analysis

Top Keywords

interface state
8
state
7
metal/phthalocyanine hybrid
4
hybrid interface
4
states
4
interface states
4
states ag111
4
ag111 phthalocyanine/ag111
4
phthalocyanine/ag111 interface
4
state observed
4

Similar Publications

Background: Among cardiovascular diseases, adult patients with congenital heart disease represent a population that has been continuously increasing, which is mainly due to improvement of the pathophysiological framing, including the development of surgical and reanimation techniques. However, approximately 20% of these patients will require surgery in adulthood and 40% of these cases will necessitate reintervention for residual defects or sequelae of childhood surgery. In this field, cardiac rehabilitation (CR) in the postsurgical phase has an important impact on the patient by improving psychophysical and clinical recovery in reducing fatigue and dyspnea to ultimately increase survival.

View Article and Find Full Text PDF

Architecturally hindered crystallization of bottlebrush graft copolymers offers a reaction- and solvent-free pathway for creating injectable elastomers with tissue-mimetic softness. Currently, injectable materials involve solvents and chemical reactions, leading to uncontrolled swelling, leaching of unreacted moieties, and side reactions with tissue. To address this issue, bottlebrush copolymers with a poly(ethylene glycol) (PEG) amorphous block and crystallizable poly(lactic acid) (PLA) grafted chains (A--B) were synthesized, with grafted chains of controlled length arranged along the backbone at controlled spacing.

View Article and Find Full Text PDF

Bivalent OX40 Aptamer and CpG as Dual Agonists for Cancer Immunotherapy.

ACS Appl Mater Interfaces

January 2025

College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.

Cancer immunotherapy has revolutionized cancer treatment by harnessing the body's immune system to recognize and attack tumors. Over the past 25 years, the use of blocking antibodies has fundamentally transformed the landscape of cancer therapy. However, despite extensive research, agonist antibodies targeting costimulatory receptors such as ICOS, GITR, OX40, CD27, and 4-1BB have consistently underperformed in clinical trials over the past 15 years, failing to meet the anticipated success.

View Article and Find Full Text PDF

Electric aircraft such as electric aircraft and electric vehicles play a key role in the future electric aviation industry, but they put forward huge requirements for battery energy density. However, the current high-energy-density lithium battery technology still needs to be broken through. Herein, through the molecular structure design of the polymer electrolyte, a strategy of a fast migration channel and wide electrochemical window is proposed to fabricate high-voltage-resistant solid polymer electrolyte (HVPE) via in situ polymerization.

View Article and Find Full Text PDF

Entropy-based methods for formulating bottom-up ultra-coarse-grained models.

J Chem Phys

January 2025

Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA.

Bottom-up coarse-grained (CG) modeling is an effective means of bypassing the limited spatiotemporal scales of conventional atomistic molecular dynamics while retaining essential information from the atomistic model. A central challenge in CG modeling is the trade-off between accuracy and efficiency, as the inclusion of often pivotal many-body interaction terms in the CG force-field renders simulation markedly slower than simple pairwise models. The Ultra Coarse-Graining (UCG) method incorporates many-body terms through discrete internal state variables that modulate the CG force-field according to, e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!