Posttranslational Modifications of the Master Transcriptional Regulator NPR1 Enable Dynamic but Tight Control of Plant Immune Responses.

Cell Host Microbe

Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Department of Biology, PO Box 90338, Duke University, Durham, NC 27708, USA. Electronic address:

Published: August 2015

NPR1, a master regulator of basal and systemic acquired resistance in plants, confers immunity through a transcriptional cascade, which includes transcription activators (e.g., TGA3) and repressors (e.g., WRKY70), leading to the massive induction of antimicrobial genes. How this single protein orchestrates genome-wide transcriptional reprogramming in response to immune stimulus remains a major question. Paradoxically, while NPR1 is essential for defense gene induction, its turnover appears to be required for this function, suggesting that NPR1 activity and degradation are dynamically regulated. Here we show that sumoylation of NPR1 by SUMO3 activates defense gene expression by switching NPR1's association with the WRKY transcription repressors to TGA transcription activators. Sumoylation also triggers NPR1 degradation, rendering the immune induction transient. SUMO modification of NPR1 is inhibited by phosphorylation at Ser55/Ser59, which keeps NPR1 stable and quiescent. Thus, posttranslational modifications enable dynamic but tight and precise control of plant immune responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537515PMC
http://dx.doi.org/10.1016/j.chom.2015.07.005DOI Listing

Publication Analysis

Top Keywords

posttranslational modifications
8
npr1
8
enable dynamic
8
dynamic tight
8
control plant
8
plant immune
8
immune responses
8
transcription activators
8
defense gene
8
modifications master
4

Similar Publications

Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Hepatitis B virus (HBV) is the main pathogen for HCC development. HBV covalently closed circular DNA (cccDNA) forms extra-host chromatin-like minichromosomes in the nucleus of hepatocytes with host histones, non-histones, HBV X protein (HBx) and HBV core protein (HBc).

View Article and Find Full Text PDF

Chromatin remodeling, which involves the histone-to-protamine exchange process during spermiogenesis, is crucial for sperm nuclear condensation and male fertility. However, the key regulators and underlying molecular mechanisms involved in this process remain largely unexplored. In this study, we discovered that deficiency in the family with sequence similarity 170 member A (Fam170a) led to abnormal sperm nuclear morphology and male infertility in mice, mirroring the observation of very low Fam170a transcription levels in sperm of infertile men with teratozoospermia.

View Article and Find Full Text PDF

Lactate, long viewed as a byproduct of glycolysis and metabolic waste. Initially identified within the context of yogurt fermentation, lactate's role extends beyond culinary applications to its significance in biochemical processes. Contemporary research reveals that lactate functions not merely as the terminal product of glycolysis but also as a nexus for initiating physiological and pathological responses within the body.

View Article and Find Full Text PDF

Insights on Bmi-1 therapeutic targeting in head and neck cancers.

Oncol Res

January 2025

LICIFO, Department of Restorative Sciences, Faculty of Dentistry, University of Costa Rica (HNSCC), San José, 11501, Costa Rica.

The B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1) protein of the polycomb complex is an essential mediator of the epigenetic transcriptional silencing by the chromatin structure. It has been reported to be crucial for homeostasis of the stem cells and tumorigenesis. Though years of investigation have clarified Bmi-1's transcriptional regulation, post-translational modifications, and functions in controlling cellular bioenergetics, pathologies, and DNA damage response, the full potential of this protein with so many diverse roles are still unfulfilled.

View Article and Find Full Text PDF

Enhanced membrane protein production in HEK293T cells via gene knockout: A CRISPR-Cas9 mediated approach.

Biomol Biomed

January 2025

Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Translational Research Team, Surginex Co., Republic of Korea; Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

HEK293T cells are extensively utilized for therapeutic protein production due to their human origin, which enables accurate post-translational modifications. This study aimed to enhance membrane protein production in HEK293T cells by knocking out the ATF4 gene using CRISPR-Cas9 technology. The ATF4 gene was edited by infecting HEK293T cells with a lentivirus carrying optimized single-guide RNA (ATF4-KO-3) and Cas9 genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!