Dengue Non-coding RNA: TRIMmed for Transmission.

Cell Host Microbe

Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands. Electronic address:

Published: August 2015

Dengue virus RNA is trimmed by the 5'→3' exoribonuclease XRN1 to produce an abundant, non-coding subgenomic flavivirus RNA (sfRNA) in infected cells. In a recent paper in Science, Manokaran et al. (2015) report that sfRNA binds TRIM25 to evade innate immune sensing of viral RNA by RIG-I.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chom.2015.07.009DOI Listing

Publication Analysis

Top Keywords

rna trimmed
8
dengue non-coding
4
rna
4
non-coding rna
4
trimmed transmission
4
transmission dengue
4
dengue virus
4
virus rna
4
trimmed 5'→3'
4
5'→3' exoribonuclease
4

Similar Publications

Passion fruit (Passiflora edulis) is a commercially important crop known for its nutritional value, high antioxidant content, and use in beverages and desserts. Gulupa baciliform virus A (GBVA), tentatively named Badnavirus in the family Caulimoviridae, is a cryptic circular double-stranded DNA (dsDNA, ≈6,951 bps) virus recently reported in Colombia with asymptomatic infection of passion fruit (Sepúlveda et al. 2022).

View Article and Find Full Text PDF

First report of privet leaf blotch-associated virus (PLBaV) infecting lilac ( L.) in France.

Plant Dis

January 2025

INRA Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, INRA - Université de Bordeaux, CS20032, Villenave d'Ornon , France, 33882 cedex;

Privet leaf blotch-associated virus (PLBaV) is an Idaeovirus discovered by high-throughput sequencing (HTS) in privet (Ligustrum japonicum L) in southern Italy in 2017 (Navarro et al., 2017). In privet, it causes a leaf blotch disease with yellowish or whitish chlorotic blotches or ringspots.

View Article and Find Full Text PDF

tRNA nucleotidyltransferase represents a ubiquitous and essential activity that adds the indispensable CCA triplet to the 3'-end of tRNAs. To fulfill this function, the enzyme contains a set of highly conserved motifs whose coordinated interplay is crucial for the sequence-specific CCA polymerization. In the human enzyme, alterations within these regions have been shown to lead to the manifestation of disease.

View Article and Find Full Text PDF

Motivation: Recent advancements in parallel sequencing methods have precipitated a surge in publicly available short-read sequence data. This has encouraged the development of novel computational tools for the de novo assembly of transcriptomes from RNA-seq data. Despite the availability of these tools, performing an end-to-end transcriptome assembly remains a programmatically involved task necessitating familiarity with best practices.

View Article and Find Full Text PDF

Improved characterization of 3' single-cell RNA-seq libraries with paired-end avidity sequencing.

NAR Genom Bioinform

December 2024

Department of Biomedical Informatics, University of Utah School of Medicine, 421 Wakara Way #140, Salt Lake City, UT 84112, USA.

Prevailing poly(dT)-primed 3' single-cell RNA-seq protocols generate barcoded cDNA fragments containing the reverse transcriptase priming site or in principle the polyadenylation site. Direct sequencing across this site was historically difficult because of DNA sequencing errors induced by the homopolymeric primer at the 'barcode' end. Here, we evaluate the capability of 'avidity base chemistry' DNA sequencing from Element Biosciences to sequence through the primer and enable accurate paired-end read alignment and precise quantification of polyadenylation sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!