Little is known about how salt impacts primary metabolic pathways of C4 plants, particularly related to kernel development and seed set. Osmotic stress was applied to maize (Zea mays) B73 by irrigation with increasing concentrations of NaCl from the initiation of floral organs until 3 d after pollination. At silking, photosynthesis was reduced to only 2% of control plants. Salt treatment was found to reduce spikelet growth, silk growth, and kernel set. Osmotic stress resulted in higher concentrations of sucrose (Suc) and hexose sugars in leaf, cob, and kernels at silking, pollination, and 3 d after pollination. Citric acid cycle intermediates were lower in salt-treated tissues, indicating that these sugars were unavailable for use in respiration. The sugar-signaling metabolite trehalose-6-phosphate was elevated in leaf, cob, and kernels at silking as a consequence of salt treatment but decreased thereafter even as Suc levels continued to rise. Interestingly, the transcripts of trehalose pathway genes were most affected by salt treatment in leaf tissue. On the other hand, transcripts of the SUCROSE NONFERMENTING-RELATED KINASE1 (SnRK1) marker genes were most affected in reproductive tissue. Overall, both source and sink strength are reduced by salt, and the data indicate that trehalose-6-phosphate and SnRK1 may have different roles in source and sink tissues. Kernel abortion resulting from osmotic stress is not from a lack of carbohydrate reserves but from the inability to utilize these energy reserves.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4587459 | PMC |
http://dx.doi.org/10.1104/pp.15.00729 | DOI Listing |
BMC Plant Biol
January 2025
Shanghai Key Laboratory of Agricultural Genetics and Breeding, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
Salinization poses a significant challenge in agriculture. Identifying salt-tolerant plant germplasm resources and understanding their mechanisms of salt tolerance are crucial for breeding new salt-tolerant plant varieties. However, one of the primary obstacles to achieving this goal in crops is the physiological complexity of the salt-tolerance trait.
View Article and Find Full Text PDFJ Vis Exp
December 2024
1State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry; Comprehensive Experimental Center in Yellow River Delta of Chinese Academy of Forestry; Tianjin Institute of Forestry Science, Chinese Academy of Forestry;
Cryptobiosis is a state where organisms lose nearly all their internal water and enter anhydrobiosis under extreme environmental stress. The dispersal third-stage juveniles (pre-dauer juveniles, ) of Bursaphelenchus xylophilus can enter cryptobiosis through dehydration and revive upon rehydration when environmental conditions improve. Osmotic regulation is crucial for their survival in this process.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146.
Animals alter their behavior in response to changes in the environment. Upon encountering hyperosmotic conditions, the nematode worm initiates avoidance and cessation of egg-laying behavior. While the sensory pathway for osmotic avoidance is well-understood, less is known about how egg laying is inhibited.
View Article and Find Full Text PDFMechanical properties of the nucleus are remodeled not only by extracellular forces transmitted to the nucleus but also by internal modifications, such as those induced by viral infections. During herpes simplex virus type 1 infection, the viral regulation of essential nuclear functions and growth of the nuclear viral replication compartments are known to reorganize nuclear structures. However, little is known about how this infection-induced nuclear deformation changes nuclear mechanobiology.
View Article and Find Full Text PDFHortic Res
January 2025
College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
As one of the grave environmental hazards, soil salinization seriously limits crop productivity, growth, and development. When plants are exposed to salt stress, they suffer a sequence of damage mainly caused by osmotic stress, ion toxicity, and subsequently oxidative stress. As sessile organisms, plants have developed many physiological and biochemical strategies to mitigate the impact of salt stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!