Cardiovascular disease is the primary cause of morbidity and mortality in diabetes, and endothelial dysfunction is commonly seen in these patients. Increased O-linked N-acetylglucosamine (O-GlcNAc) protein modification is one of the central pathogenic features of diabetes. Modification of proteins by O-GlcNAc (O-GlcNAcylation) is regulated by two key enzymes: β-N-acetylglucosaminidase [O-GlcNAcase (OGA)], which catalyzes the reduction of protein O-GlcNAcylation, and O-GlcNAc transferase (OGT), which induces O-GlcNAcylation. However, it is not known whether reducing O-GlcNAcylation can improve endothelial dysfunction in diabetes. To examine the effect of endothelium-specific OGA overexpression on protein O-GlcNAcylation and coronary endothelial function in diabetic mice, we generated tetracycline-inducible, endothelium-specific OGA transgenic mice, and induced OGA by doxycycline administration in streptozotocin-induced type 1 diabetic mice. OGA protein expression was significantly decreased in mouse coronary endothelial cells (MCECs) isolated from diabetic mice compared with control MCECs, whereas OGT protein level was markedly increased. The level of protein O-GlcNAcylation was increased in diabetic compared with control mice, and OGA overexpression significantly decreased the level of protein O-GlcNAcylation in MCECs from diabetic mice. Capillary density in the left ventricle and endothelium-dependent relaxation in coronary arteries were significantly decreased in diabetes, while OGA overexpression increased capillary density to the control level and restored endothelium-dependent relaxation without changing endothelium-independent relaxation. We found that connexin 40 could be the potential target of O-GlcNAcylation that regulates the endothelial functions in diabetes. These data suggest that OGA overexpression in endothelial cells improves endothelial function and may have a beneficial effect on coronary vascular complications in diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4628934PMC
http://dx.doi.org/10.1152/ajpcell.00069.2015DOI Listing

Publication Analysis

Top Keywords

diabetic mice
20
protein o-glcnacylation
16
oga overexpression
16
coronary endothelial
12
endothelial
8
type diabetic
8
endothelial dysfunction
8
o-glcnacylation
8
endothelium-specific oga
8
endothelial function
8

Similar Publications

Objective: This study aimed to evaluate the positive effects on anti-oxidation, anti-inflammation, and microbial composition optimization of diabetic mice using tussah (Antheraea pernyi) silk fibroin peptides (TSFP), providing the theoretical foundation for making the use of silk resources of A. pernyi and incorporating as a supplement into the hypoglycemic foods.

Method: The animal model of diabetes was established successfully.

View Article and Find Full Text PDF

Rebound bone loss following denosumab discontinuation is an important barrier in the effective long-term treatment of skeletal disorders. This is driven by increased osteoclastic bone resorption following the offset of RANKL inhibition, and sequential osteoclast-directed therapy has been utilised to mitigate this. However, current sequential treatment strategies intervene following the offset of RANKL inhibition and this approach fails to consistently prevent bone loss.

View Article and Find Full Text PDF

Reduced autoimmunity associated with deletion of host CD73.

Immunohorizons

January 2025

Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.

CD73 is ubiquitously expressed and regulates critical functions across multiple organ systems. The sequential actions of CD39 and CD73 accomplish the conversion of adenosine triphosphate to adenosine and shift the adenosine triphosphate-driven proinflammatory immune cell milieu toward an anti-inflammatory state. This immunological switch is a major mechanism by which regulatory T (Treg) cells control inflammation.

View Article and Find Full Text PDF

Diabetes significantly increases the risk of serious health issues, including prolonged skin inflammation and delayed wound healing, owing to inferior glucose control and suppression of the immune system. Although traditional hydrogen (H2) therapy is slightly effective, its ability to tailor the release of H2 on the skin is limited. Accordingly, this study proposed a novel strategy for electrocatalytic H2 release under neutral conditions to promote wound healing in diabetic mice and rabbit.

View Article and Find Full Text PDF

Diabetes mellitus can cause impaired and delayed wound healing, leading to lower extremity amputations; however, the mechanisms underlying the regulation of vascular endothelial growth factor-dependent (VEGF-dependent) angiogenesis remain unclear. In our study, the molecular underpinnings of endothelial dysfunction in diabetes are investigated, focusing on the roles of disabled-2 (Dab2) and Forkhead box M1 (FOXM1) in VEGF receptor 2 (VEGFR2) signaling and endothelial cell function. Bulk RNA-sequencing analysis identified significant downregulation of Dab2 in high-glucose-treated primary mouse skin endothelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!