Transition-metal-catalyzed hydrogen-transfer annulations: access to heterocyclic scaffolds.

Angew Chem Int Ed Engl

Catalysis Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 (India).

Published: September 2015

The ability of hydrogen-transfer transition-metal catalysts, which enable increasingly rapid access to important structural scaffolds from simple starting materials, has led to a plethora of research efforts on the construction of heterocyclic scaffolds. Transition-metal-catalyzed hydrogen-transfer annulations are environmentally benign and highly atom-economical as they release of water and hydrogen as by-product and utilize renewable feedstock alcohols as starting materials. Recent advances in this field with respect to the annulations of alcohols with various nucleophilic partners, thus leading to the formation of heterocyclic scaffolds, are highlighted herein.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201503247DOI Listing

Publication Analysis

Top Keywords

heterocyclic scaffolds
12
transition-metal-catalyzed hydrogen-transfer
8
hydrogen-transfer annulations
8
starting materials
8
annulations access
4
access heterocyclic
4
scaffolds
4
scaffolds ability
4
ability hydrogen-transfer
4
hydrogen-transfer transition-metal
4

Similar Publications

ConspectusIn the search for efficient and selective electrocatalysts capable of converting greenhouse gases to value-added products, enzymes found in naturally existing bacteria provide the basis for most approaches toward electrocatalyst design. Ni,Fe-carbon monoxide dehydrogenase (Ni,Fe-CODH) is one such enzyme, with a nickel-iron-sulfur cluster named the C-cluster, where CO binds and is converted to CO at high rates near the thermodynamic potential. In this Account, we divide the enzyme's catalytic contributions into three categories based on location and function.

View Article and Find Full Text PDF

Acetohydroxyacid synthase (AHAS) is a vital enzyme in Mycobacterium tuberculosis, the pathogen causing tuberculosis (TB), involved in branched-chain amino acid synthesis. Targeting AHAS for drug design against TB offers a promising strategy due to its essentiality in bacterial growth. In current investigation, we have designed 160 novel compounds by leveraging key scaffolds identified through structure-based drug design (SBDD) methodologies.

View Article and Find Full Text PDF

Novel 1,2,3-triazole hybrids bearing various substituents have been synthesized as potential anticancer agents. Ligand-based approach has been adopted to design these compounds relying on the hybridization of 1,2,3-triazole with α,β-unsaturated carbonyl, 5- and 6-membered heterocyclic scaffolds. All synthesized members were investigated for their cytotoxic potency against nine types comprising 60 panels of human cancerous cells by the US National Cancer Institute: Development Therapeutic Program (US_NCI_DTP).

View Article and Find Full Text PDF

A Comprehensive Review: Synthesis and Pharmacological Activities of 1,3,4-Oxadiazole Hybrid Scaffolds.

Med Chem

January 2025

Department of Pharmacy, Division of Research and Innovation, Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India.

Introduction: Heterocyclic derivatives, particularly those containing heteroatoms such as oxygen and nitrogen, represent a significant portion of currently marketed drugs. Among these, the aromatic heterocycle 1,3,4-oxadiazole, characterized by an N=C=O-linkage, stands out due to its remarkable biological activities. These activities include anti-inflammatory, anti-cancer, antioxidant, anti-tubercular, antiviral, anti-diabetic, and antibacterial effects.

View Article and Find Full Text PDF

Background: Owing to their extensive utilization as pesticides, heterocycles assume a fundamental role in the management of vector-borne diseases. Despite the presence of numerous heterocyclic compounds in commercial insecticides and larvicides, resistance to pesticides still demands novel strategies to current pest control methods. Considering these facts, this review aims to survey the synthesis and SAR of heterocyclic molecules with larvicidal activity against Aedes aegypti Linn.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!