In this study, cortical receptor complex levels were determined in fetal Down syndrome (DS, trisomy 21) brain. Frontal cortices were obtained from individuals with DS (19th-22nd week of gestation) and controls. Membrane proteins were extracted, assayed on blue native gels and immunoblotted with brain receptor antibodies. Levels of a D1R-containing complex were markedly decreased in male and female cortices of DS individuals. Females with DS had significant reductions of nicotinic acetylcholine receptors α4 and α7, NMDA receptor GluN1 and AMPA receptor GluA1- and GluA3-containing receptor complexes. Levels of other brain receptor complexes (5-hydroxytryptamine 1A, GluA2 and GluR4 receptor-containing complexes) were comparable between the groups of females. Levels of GluA2- and GluA3-containing complexes were significantly increased in males. Decreased levels of D1R complexes in both sexes, along with the significant reduction of α4, α7-containing receptor complexes observed in females, may explain the brain deficits and impaired cognition observed in DS.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00726-015-2062-6DOI Listing

Publication Analysis

Top Keywords

receptor complexes
12
receptor
8
receptor complex
8
complex levels
8
fetal syndrome
8
cortices individuals
8
brain receptor
8
levels
6
complexes
6
brain
5

Similar Publications

The NMDAR-BK channelosomes as regulators of synaptic plasticity.

Biochem Soc Trans

January 2025

Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud-sección Medicina, Universidad de La Laguna, Tenerife, ES-38071, Spain.

Large conductance voltage- and calcium-activated potassium channels (BK channels) are extensively found throughout the central nervous system and play a crucial role in various neuronal functions. These channels are activated by a combination of cell membrane depolarisation and an increase in intracellular calcium concentration, provided by calcium sources located close to BK. In 2001, Isaacson and Murphy first demonstrated the coupling of BK channels with N-methyl-D-aspartate receptors (NMDAR) in olfactory bulb neurons.

View Article and Find Full Text PDF

Melanoma, a highly aggressive skin cancer, remains a significant cause of mortality despite advancements in therapeutic strategies. There is an urgent demand for developing vaccines that can elicit strong and comprehensive immune responses against this malignancy. Achieving this goal is crucial to enhance the efficacy of immunological defense mechanisms in combating this disease.

View Article and Find Full Text PDF

Clinical Trials in Cancer Theranostics with Potential Near-Term Impact on Clinical Practice.

Br J Radiol

January 2025

Division of Nuclear Medicine and Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

Theranostics has its roots with the first radioiodine therapy for thyroid diseases in about 80 years ago. More recently the field has experienced a remarkable renascence with the regulatory approval of paired imaging and radiopharmaceutical therapy agents in gastroenteropancreatic neuroendocrine tumors and metastatic castration-resistant prostate cancer that are now employed in routine clinical practice. The momentum is strong for identification and testing of new theranostic agents for use in various cancers and finding new clinical incications of the available agents.

View Article and Find Full Text PDF

The role of the electron transport chain (ETC) in cell proliferation control beyond its crucial function in supporting ATP generation has recently emerged. In this study, we found that, among the four ETC complexes, the complex I (CI)-mediated NAD regeneration is important for cancer cell proliferation. In cancer cells, a decrease in CI activity by RNA interference (RNAi) against NADH:ubiquinone oxidoreductase core subunit V1 (NDUFV1) arrested the cell cycle at the G/S phase, accompanying upregulation of p21 cyclin-dependent kinase inhibitor expression.

View Article and Find Full Text PDF

Machine learning (ML) has shown great potential in the adaptive immune receptor repertoire (AIRR) field. However, there is a lack of large-scale ground-truth experimental AIRR data suitable for AIRR-ML-based disease diagnostics and therapeutics discovery. Simulated ground-truth AIRR data are required to complement the development and benchmarking of robust and interpretable AIRR-ML methods where experimental data is currently inaccessible or insufficient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!