AI Article Synopsis

Article Abstract

Pulmonary tuberculosis (TB) is characterized by oxidative stress and lung tissue destruction by matrix metalloproteinases (MMPs). The interplay between these distinct pathological processes and the implications for TB diagnosis and disease staging are poorly understood. Heme oxygenase-1 (HO-1) levels were previously shown to distinguish active from latent TB, as well as successfully treated Mycobacterium tuberculosis infection. MMP-1 expression is also associated with active TB. In this study, we measured plasma levels of these two important biomarkers in distinct TB cohorts from India and Brazil. Patients with active TB expressed either very high levels of HO-1 and low levels of MMP-1 or the converse. Moreover, TB patients with either high HO-1 or MMP-1 levels displayed distinct clinical presentations, as well as plasma inflammatory marker profiles. In contrast, in an exploratory North American study, inversely correlated expression of HO-1 and MMP-1 was not observed in patients with other nontuberculous lung diseases. To assess possible regulatory interactions in the biosynthesis of these two enzymes at the cellular level, we studied the expression of HO-1 and MMP-1 in M. tuberculosis-infected human and murine macrophages. We found that infection of macrophages with live virulent M. tuberculosis is required for robust induction of high levels of HO-1 but not MMP-1. In addition, we observed that CO, a product of M. tuberculosis-induced HO-1 activity, inhibits MMP-1 expression by suppressing c-Jun/AP-1 activation. These findings reveal a mechanistic link between oxidative stress and tissue remodeling that may find applicability in the clinical staging of TB patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4561190PMC
http://dx.doi.org/10.4049/jimmunol.1500942DOI Listing

Publication Analysis

Top Keywords

ho-1 mmp-1
16
heme oxygenase-1
8
oxidative stress
8
mmp-1 expression
8
high levels
8
levels ho-1
8
expression ho-1
8
ho-1
7
mmp-1
7
levels
6

Similar Publications

Mycosporine-glycine (M-Gly), a member of the mycosporine-like amino acid (MAA) family, is known for its potent antioxidant and anti-inflammatory properties. However, its in vivo efficacy in alleviating acute skin photodamage, primarily caused by oxidative stress, has not been well explored. In this investigation, 30 female ICR mice were divided into four groups: a control group and three Ultraviolet B (UVB)-exposed groups treated with saline or M-Gly via intraperitoneal injection for 30 days.

View Article and Find Full Text PDF

The genus Salix spp. has long been recognized as a healing herb for its use in treating fever, inflammation, and pain relief, as well as a food source for its nutritional value. In this study, we aimed to explore the potential bioactive natural products in the leaves of Salix chaenomeloides, commonly known as Korean pussy willow, for their protective effects against skin damage, including aging.

View Article and Find Full Text PDF

Background: Oxidative stress plays an important role in the skin aging process. Rapamycin has been shown to have anti-aging effects, but its role in oxidative senescence of skin cells remains unclear. The aim of this study was to explore the effect of rapamycin on oxidative stress-induced skin cell senescence and to illustrate the mechanism.

View Article and Find Full Text PDF

γ-Mangosteen, an autophagy enhancer, prevents skin-aging via activating KEAP1/NRF2 signaling and downregulating MAPKs/AP-1/NF-κB-mediated MMPs.

Phytomedicine

September 2024

Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea; Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Korea. Electronic address:

Background: Mangosteens, a naturally occurring xanthones, found abundantly in mangosteen fruits. The anti-skin aging potential of γ-mangosteen (GM) remains unexplored; therefore, we investigated the UVB-induced anti-skin aging of GM via activation of autophagy.

Hypothesis: We hypothesized that GM exerts antioxidant and anti-aging capabilities both in vitro and in vivo through activation of autophagy as well as control of KEAP1/NRF2 signaling and MAPKs/AP-1/NF-κB-mediated MMPs pathways.

View Article and Find Full Text PDF

Protective effects of sinomenine against dextran sulfate sodium-induced ulcerative colitis in rats via alteration of HO-1/Nrf2 and inflammatory pathway.

Inflammopharmacology

June 2024

Department of Gastrointestinal Surgery, Jinan Central Hospital, No.105, Jiefang Road, Lixia District, Jinan, 250013, Shandong, China.

Background: Dextran Sulfate Sodium (DSS) induces ulcerative colitis (UC), a type of inflammatory bowel disease (IBD) that leads to inflammation, swelling, and ulcers in the large intestine. The aim of this experimental study is to examine how sinomenine, a plant-derived alkaloid, can prevent or reduce the damage caused by DSS in the colon and rectum of rats.

Material And Methods: Induction of ulcerative colitis (UC) in rats was achieved by orally administering a 2% Dextran Sulfate Sodium (DSS) solution, while the rats concurrently received oral administrations of sinomenine and sulfasalazine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!