Optimizing Deep Brain Stimulation of the Nucleus Accumbens in a Reward Preference Rat Model.

Neuromodulation

Department of Anatomy, Brain Health Research Centre, School of Medical Sciences, University of Otago, Dunedin, New Zealand.

Published: October 2015

Objective/hypothesis: Deep brain stimulation (DBS) has become the preferred therapy for a growing number of treatment-resistant neuropsychiatric conditions, offering the benefit of being amenable to fine-tuning to enhance its efficacy. However, while some DBS parameters are routinely adjusted, the stimulation is almost always delivered in a continuous "tonic" pattern, which may be suboptimal at times. Our overall aim is to investigate the application of differing levels of rewarding DBS to the reconditioning of behavioral "trigger" and "non-trigger" stimuli in impulse-control disorders (including addiction). As a first step, we used a rat model of nucleus accumbens (NAc) DBS to rigorously compare the relative reward values of different stimulation paradigms. We hypothesized that delivering pulses in a more physiological pattern would prove more rewarding than delivering tonic stimulation.

Materials And Methods: We implanted microelectrodes in the left NAc shell and trained rats to initiate and terminate DBS to demonstrate their "preference" between different brain stimulation reward (BSR) paradigms. We tested a range of BSR paradigms, including tonic, intermittent tonic, and burst paradigms. Two paradigms were compared at a time, and paired t-tests were used to determine whether the rats significantly "preferred" one paradigm over another.

Results: The rats significantly preferred intermittent tonic BSR paradigms to continuous and burst paradigms, and generally preferred paradigms that delivered more pulses over the stimulation period.

Conclusions: These findings highlight that the standard approach of delivering tonic DBS is not optimal under all circumstances. Further research should investigate which DBS paradigms are best for different brain disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ner.12339DOI Listing

Publication Analysis

Top Keywords

brain stimulation
12
bsr paradigms
12
paradigms
9
deep brain
8
nucleus accumbens
8
rat model
8
delivering tonic
8
intermittent tonic
8
burst paradigms
8
dbs
7

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Loma Linda University Health, Loma Linda, CA, USA.

Background: Only about 50% of the variance in cognitive decline occurring during Alzheimer's pathogenesis is attributable to standard AD biomarkers (cerebrocortical Aβ, pathological tau, and atrophy) (Tosun et al., Alzheimer's Dement. 18: 1370, 2022).

View Article and Find Full Text PDF

Background: Transcutaneous stimulation of the auricular branch of the vagus nerve (tVNS) was administered to participants diagnosed with mild cognitive impairment (MCI) to improve word-list memory (primary outcome) and other cognitive skills.

Method: A randomized, double-blind, placebo-controlled crossover design was used for this trial. Participants with MCI (n = 59) were sorted into one of two sequences: Sham-tVNS or tVNS-Sham.

View Article and Find Full Text PDF

Background: Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive emerging tool to modulate brain activities and functional connectivity in various neuropsychiatric disorders. rTMS combined with cognitive training (rTMS-COG) has been showing cognitive enhancing effects compared to those of placebo in mild Alzheimer's disease (AD) in some previous studies. However, there is not much research to conclude how much each rTMS or COG contributes to therapeutic cognitive effects.

View Article and Find Full Text PDF

Background: An estimated ∼40% of dementia cases are due to modifiable risk factors which can be targeted in lifestyle interventions. Effective interventions employ face-to-face delivery, making them resource-intensive and burdensome. Digital interventions offer scalability, accessibility and cost-effectiveness.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) affects over 55 million people worldwide and is characterized by abnormal deposition of amyloid-β and tau in the brain causing neuronal damage and disrupting transmission within brain circuits. Episodic memory loss, executive deficits, and depression are common symptoms arising from altered function in spatially distinct brain circuits that greatly contribute to disability. Transcranial electrical stimulation (tES) can target these circuits and has shown promise to relieve specific symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!