Introduction: Patients with systemic lupus erythematosus (SLE) have a decreased ability to clear cell remnants and multiple deficiencies in the ability to degrade cellular chromatin have been linked to the disease. Since the discovery of neutrophil extracellular traps (NETs), a renewed interest has been sparked in this field of research with multiple studies reporting a decreased ability of patients with SLE to degrade NETs. In this study we extend these findings by investigating the ability of patients with SLE to degrade chromatin from multiple clinically relevant sources.
Methods: We use flow cytometry in combination with NET degradation and DNA zymogram assays to investigate the ability of sera from SLE patients to degrade chromatin from three different sources of DNA such as NETs, apoptotic and necrotic cells. This ability was further associated with clinical manifestations.
Results: We found that 61% of the patients had an affected degradation of at least one chromatin source. Further, degradation of NETs correlated with degradation of chromatin from secondary necrotic cells but not with degradation of chromatin from primary necrotic cells. Patients who fail to degrade several forms of DNA more often display anti-nuclear and nephritic involvement whereas this is not observed in patients with decreased ability to degrade chromatin from primary necrotic cells.
Conclusions: The majority of patients with SLE has a decreased ability to degrade chromatin from clinically relevant sources. This decreased ability is further reflected in their clinical presentation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4535789 | PMC |
http://dx.doi.org/10.1186/s13075-015-0726-y | DOI Listing |
Biophys J
January 2025
Department of Biology, New York University, New York, New York, 10003, USA. Electronic address:
The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.
View Article and Find Full Text PDFChin Med J (Engl)
January 2025
Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing 100730, China.
Background: Fibrosis of the connective tissue in the vaginal wall predominates in pelvic organ prolapse (POP), which is characterized by excessive fibroblast-to-myofibroblast differentiation and abnormal deposition of the extracellular matrix (ECM). Our study aimed to investigate the effect of ECM stiffness on vaginal fibroblasts and to explore the role of methyltransferase 3 (METTL3) in the development of POP.
Methods: Polyacrylamide hydrogels were applied to create an ECM microenvironment with variable stiffness to evaluate the effects of ECM stiffness on the proliferation, differentiation, and expression of ECM components in vaginal fibroblasts.
Sci Rep
January 2025
School of Stomatology, Bengbu Medical University, No. 2600 Donghai Road, Bengbu, 233030, China.
Tongue squamous cell carcinoma (TSCC) is a common malignant oral cancer characterized by substantial invasion, a high rate of lymph node and distant metastasis, and a high recurrence rate. This study aims to provide new ideas for the diagnosis and treatment of TSCC patients by exploring the related mechanisms that affect the migration and invasion of TSCC and inhibit the migration and spread of cancer cells. The results indicated the rate of high expression of IL-17 in cancer tissues was greater than that in tongue tissues, and the expression of IL-17 was related to the TNM stage.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Technology and Life Sciences-National Research Institute, Falenty, 3 Hrabska Avenue, 05-090, Raszyn, Poland.
Plant growth-promoting bacteria (PGPB) are considered an effective eco-friendly biostimulator. However, relatively few studies have examined how PGPB affect the native bacterial community of major crops. Thus, this study investigates the impact of a PGPB consortium, comprising Pseudomonas sp.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Orthodontics and Dentofacial Orthopedics, University Medical Center of the Johannes Gutenberg-University Mainz, Augustusplatz 2, 55131, Mainz, Germany.
Direct printed aligners (DPAs) offer benefits like the ability to vary layer thickness within a single DPA and to 3D print custom-made removable orthodontic appliances. The biocompatibility of appliances made from Tera Harz TA-28 (Graphy Inc., Seoul, South Korea) depends on strict adherence to a standardized production and post-production protocol, including UV curing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!