Immune escape and metastasis are the hallmarks of several types of cancer including bladder cancer. One of the mechanisms involved in these processes has been linked to indoleamine 2,3-dioxygenase (IDO). Although IDO is classically recognized for its immunomodulatory property, it has presented nonimmunological effects in some tumors. TGF-β1 is believed to contribute to carcinoma development by modulating immunossupressive molecules, including IDO. In addition, TGF-β1 induces the epithelial-mesenchymal transition (EMT), which is a critical step in the tumor invasiveness and metastasis. We investigated the role of MT and IDO modulation in the induction of EMT by TGF-β1 in T24 human bladder carcinoma cells. When T24 cells were incubated with the IDO inhibitor (MT, 1-methyl-D-tryptophan), with TGF-β1, and with MT+TGF-β1, a significant decrease of IDO expression and activity was observed. In addition, downregulation of e-cadherin and upregulation of n-cadherin and EMT transcription factors were induced by the treatments, confirming the induction of EMT. siRNA-mediated knockdown of IDO decreased e-cadherin expression, but had no effect on EMT transcription factors. In the scratch-wound assay, the heightened migration process was intensified when the cells were incubated with MT+TGF-β1. These effects were associated with a robust inhibition of Akt activation. After inoculation of T24 cells under the kidney capsule of Balb/c nude, the cells were positive for IDO in the center of the cell infiltrate, being negative in the periphery, where EMT is high. In conclusion, inhibition of IDO by TGF-β1 and MT is associated with EMT in T24 human bladder carcinoma cells. MT has potentiating effect in TGF-β1-induced EMT, independently of IDO. This nonimmunological effect of MT should be considered if IDO is the target to avoid immune escape in bladder cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534444 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0134858 | PLOS |
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi
January 2025
National Key Laboratory of Bioreactors, School of Biological Engineering, East China University of Science and Technology, Shanghai 200237, China. *Corresponding author, E-mail:
J Org Chem
January 2025
College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China.
A copper-catalyzed domino addition/cyclization reaction was developed to synthesize novel benzoselenazole-linked 1,2,3-triazole and tetracyclic fused 12-benzo[4,5]selenazole[2,3-]quinazolin-12-one derivatives from isoselenocyanates. This domino reaction efficiently constructed multiple new chemical bonds in a single step, forming either four (one C-Se and three C-) or three (one C-Se and two C-) bonds. The reaction offers several key advantages, including mild conditions, broad substrate compatibility, and straightforward and safe operation.
View Article and Find Full Text PDFBiomedicines
November 2024
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing 100089, China.
Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 (PLOD1) is known as an enhancer of collagen fiber deposition and cross-linking stability. However, there is limited information on its function in tumors. In this study, we aimed to elucidate the function and potential mechanism of action of PLOD1 across cancers.
View Article and Find Full Text PDFWe studied the effect of urinary urea concentration on the hemolysin production and cytotoxicity of the uropathogenic Morganella morganii strain MM 190. The highest hemolytic activity of M. morganii cultivated in urine with low urea concentration (23 and 82 mmol/liter) was observed between 3rd and 4th hours of post-inoculation, while in urine with standard urea level (117 mmol/liter), the activity was observed at 5th hour of post-inoculation.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
December 2024
Department of Urology, Research Laboratories, University of Leipzig, Liebigstraße 19, 04103 Leipzig, Germany. Electronic address:
Background: Photodynamic therapy (PDT) and radiotherapy using ionizing radiation (IR) are promising options for organ-preserving treatment of bladder cancer (BCa). A combination therapy (IR+PDT) could be beneficial for BCa treatment.
Purpose: For PDT, we used the near-infrared photosensitizer tetrahydroporphyrin-tetratosylate (THPTS) showing high therapeutic efficacy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!