A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Mechanism of Iron(II)-Catalyzed Asymmetric Mukaiyama Aldol Reaction in Aqueous Media: Density Functional Theory and Artificial Force-Induced Reaction Study. | LitMetric

Density functional theory (DFT), combined with the artificial force-induced reaction (AFIR) method, is used to establish the mechanism of the aqueous Mukaiyama aldol reactions catalyzed by a chiral Fe(II) complex. On the bases of the calculations, we identified several thermodynamically stable six- or seven-coordinate complexes in the solution, where the high-spin quintet state is the ground state. Among them, the active intermediates for the selectivity-determining outer-sphere carbon-carbon bond formation are proposed. The multicomponent artificial force-induced reaction (MC-AFIR) method found key transition states for the carbon-carbon bond formation, and explained the enantioselectivity and diastereoselectivity. The overall mechanism consists of the coordination of the aldehyde, carbon-carbon bond formation, the rate-determining proton transfer from water to aldehyde, and dissociation of trimethylsilyl group. The calculated full catalytic cycle is consistent with the experiments. This study provides important mechanistic insights for the transition metal catalyzed Mukaiyama aldol reaction in aqueous media.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.5b05835DOI Listing

Publication Analysis

Top Keywords

mukaiyama aldol
12
artificial force-induced
12
force-induced reaction
12
carbon-carbon bond
12
bond formation
12
aldol reaction
8
reaction aqueous
8
aqueous media
8
density functional
8
functional theory
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!