The performance of Li/O2 batteries is thought to be limited by charge transport through the solid Li2O2 discharge product. Prior studies suggest that electron tunneling is the main transport mechanism through thin, compact Li2O2 deposits. The present study employs a new continuum transport model to explore an alternative scenario, in which charge transport is mediated by polaron hopping. Unlike earlier models, which assume a uniform carrier concentration or local electroneutrality, the possibility of nonuniform space charge is accounted for at the Li2O2/electrolyte and Li2O2/electrode interfaces, providing a more realistic picture of transport in Li2O2 films. The temperature and current-density dependences of the discharge curves predicted by the model are in good agreement with flat-electrode experiments over a wide range of rates, supporting the hypothesis that polaron hopping contributes significantly to charge transport. Exercising the model suggests that this mechanism could explain the observed enhancement in cell performance at elevated temperature and that performance could be further improved by tuning the interfacial orientation of Li2O2 crystallites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.5b01015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!