Recent large-scale development of oil and gas from low-permeability unconventional formations (e.g., shales, tight sands, and coal seams) has raised concern about potential environmental impacts. If left improperly sealed, legacy oil and gas wells colocated with that new development represent a potential pathway for unwanted migration of fluids (brine, drilling and stimulation fluids, oil, and gas). Uncertainty in the number, location, and abandonment state of legacy wells hinders environmental assessment of exploration and production activity. The objective of this study is to apply publicly available information on Pennsylvania oil and gas wells to better understand their potential to serve as pathways for unwanted fluid migration. This study presents a synthesis of historical reports and digital well records to provide insights into spatial and temporal trends in oil and gas development. Areas with a higher density of wells abandoned prior to the mid-20th century, when more modern well-sealing requirements took effect in Pennsylvania, and areas where conventional oil and gas production penetrated to or through intervals that may be affected by new Marcellus shale development are identified. This information may help to address questions of environmental risk related to new extraction activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.5b00820 | DOI Listing |
Nat Commun
January 2025
School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, China.
Hydrogen is a promising clean energy source with geological reserves widely distributed globally, offering an annual flow exceeding 23 trillion grams. However, natural hydrogen extraction wells face unique safety challenges compared to conventional oil and gas wells. This paper reviews well safety concerns such as tubing/casing damage, cement/sealant failure, and excessive annular pressure buildup.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, China.
The boundary between wet and arid climate zones in the Tethys Ocean remains challenging to trace, complicating our understanding of global aridification pattern during the Late Carboniferous to Early Permian transition. The North China Block (NCB), situated in the Tethys Ocean, underwent a transition from humid to arid climate during the Early Permian, providing a rare opportunity to trace this climate boundary across this region. Here, we present paleomagnetic evidence indicating that the NCB underwent rapid northward drift between 290 and 281 million years ago.
View Article and Find Full Text PDFSci Total Environ
January 2025
Division of Civil Environmental Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Institute for Environmental and Energy, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea. Electronic address:
An analytical method for nine tranquilizer compounds, including eight major natural oil components and 2-phenoxyethanol, was developed using gas chromatography tandem mass spectrometry and validated under CODEX and National Institute of Food and Drug Safety Evaluation guidelines. Subsequently, 315 live seafood samples under Korean preference for sashimi (eight species) were monitored with sales distribution channels and place of origin. A total of 76 detection cases in 65 seafood samples contained the target tranquilizer compounds at concentrations ranging from 2.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China. Electronic address:
The lack of cost-effective nutrient sources and harvesting methods is currently a major obstacle to the production of sustainable biofuels from microalgae. In this study, Chlorella pyrenoidosa was cultured with saline wastewater in a stirred photobioreactor, and lipid-rich flocculent microalgae particles were successfully constructed. As the influent salinity of the photobioreactor increased from 0% to 3%, the particle size and sedimentation rate of flocculent microalgae particles gradually increased, and the lipid accumulation of microalgae also increased gradually.
View Article and Find Full Text PDFPhytomedicine
December 2024
Scabies Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, QLD, Australia. Electronic address:
Background: Scabies is a debilitating and neglected infectious disease with limited effective treatment options and affecting millions of people worldwide, mainly in poor and overcrowded settings. Essential oils from Australasian Myrtaceae are known to have parasiticidal properties, often attributed to the presence of β-triketones, which are known inhibitors of the tyrosine catabolism pathway through inhibition of hydroxyphenylpyruvate dioxygenase (HPPD).
Purpose: In this study, essential oils from mānuka (Leptospermum scoparium) were evaluated in vitro for miticidal and ovicidal activities and their active β-triketone constituents (flavesone, leptospermone, and isoleptospermone) were identified.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!