We report that S100 proteins were reduced in patients with chronic rhinosinusitis (CRS). S100A8/9, which is important in epithelial barrier function, was particularly decreased in elderly patients with CRS. Epithelial expression of S100A8/9 is partly regulated by the IL-6 trans-signaling pathway. The goal of this study was to investigate whether or not age-related reduction of S100A8/9 in CRS is associated with blunting of IL-6 trans-signaling. The levels of IL-6, soluble IL-6 receptor (sIL-6R), soluble gp130 (sgp130), and S100A8/9 from control subjects (n = 10), and patients with CRS without nasal polyps (n = 13) and those with CRS with nasal polyps (CRSwNP) (n = 14), were measured by ELISA. Age-related differences in the level of each protein were investigated. Normal human bronchial epithelial cells were cultured in air-liquid interface and stimulated with IL-6/sIL-6R and tumor necrosis factor (TNF)-α with or without the addition of sgp130, a natural inhibitor of IL-6 trans-signaling. There was a significant age-related decline in S100A8/9 and an increase in sgp130 in nasal tissue samples from patients with CRSwNP, although there was no age-related difference in IL-6/sIL-6R production. Additionally, expression of the S100A8/9 gene and protein was increased significantly by IL-6/sIL-6R plus TNF-α in normal human bronchial epithelial cells. This increase was blocked by sgp130. These results suggest that increased sgp130 in older patients may inhibit IL-6 trans-signaling, impair barrier function, and decrease S1008/9 production in elderly patients with CRSwNP. Restoration of barrier function by targeting sgp130 may be a novel treatment strategy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4742956PMC
http://dx.doi.org/10.1165/rcmb.2015-0207RCDOI Listing

Publication Analysis

Top Keywords

il-6 trans-signaling
20
nasal polyps
12
barrier function
12
chronic rhinosinusitis
8
elderly patients
8
patients crs
8
expression s100a8/9
8
crs nasal
8
normal human
8
human bronchial
8

Similar Publications

Diabetic kidney disease (DKD) is a severe microvascular complication of diabetes associated with high mortality and disability rates. Inflammation has emerged as a key pathological mechanism in DKD, prompting interest in novel therapeutic approaches targeting inflammatory pathways. Interleukin-6 (IL-6), a well-established inflammatory cytokine known for mediating various inflammatory responses, has attracted great attention in the DKD field.

View Article and Find Full Text PDF

Sterile inflammation has been increasingly recognized as a hallmark of non-infectious kidney diseases. Induction of pro-inflammatory cytokines in injured kidney tissue promotes infiltration of immune cells serving to clear cell debris and facilitate tissue repair. However, excessive or prolonged inflammatory response has been associated with immune-mediated tissue damage, nephron loss, and development of renal fibrosis.

View Article and Find Full Text PDF

Intraocular pressure (IOP) is regulated through the balance of production and drainage of aqueous humor. The main route of aqueous-humor outflow comprises the trabecular meshwork (TM) and Schlemm's canal (SC). We reported that IL-6 trans-signaling can inhibit TGF-β signaling in TM cells and may affect regulation of IOP.

View Article and Find Full Text PDF

Purpose: Interleukin-6 (IL-6) is an inflammatory cytokine implicated in various retinal pathologies and functions primarily through two signaling pathways: cis-signaling via IL-6 binding to its membrane-bound receptor (IL-6Rα), and trans-signaling via IL-6 binding to soluble IL-6 receptor (sIL-6R). Because the differential effects of IL-6 signaling in retinal Müller glial cells (MGCs) remain unclear, we generated an MGC-specific Il6ra-/- knockout (KO) mouse to eliminate IL-6Rα and, consequently, IL-6 cis-signaling in MGCs. In this study, we examined the proteomic changes in MGCs isolated from KO mice lacking a functional IL-6Rα.

View Article and Find Full Text PDF

A maternal high-fat diet predisposes to infant lung disease via increased neutrophil-mediated IL-6 trans-signaling.

Cell Rep

November 2024

QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, QLD 4072, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QLD 4000, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, QLD 4072, Australia. Electronic address:

A poor maternal diet during pregnancy predisposes the infant to severe lower respiratory tract infections (sLRIs), which, in turn, increases childhood asthma risk; however, the underlying mechanisms remain poorly understood. Here, we show that the offspring of high-fat diet (HFD)-fed mothers (HFD-reared pups) developed an sLRI following pneumovirus inoculation in early life and subsequent asthma in later life upon allergen exposure. Prior to infection, HFD-reared pups developed microbial dysbiosis and low-grade systemic inflammation (LGSI), characterized by hyperneutropoiesis in the liver and elevated inflammatory cytokine expression, most notably granulocyte-colony stimulating factor (G-CSF), interleukin-17A (IL-17A), IL-6 and soluble IL-6 receptor (sIL-6R) (indicative of IL-6 trans-signaling) in the circulation and multiple organs but most prominently the liver.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!