A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bringing Far-Field Subdiffraction Optical Imaging to Electronically Coupled Optoelectronic Molecular Materials Using Their Endogenous Chromophores. | LitMetric

We demonstrate that subdiffraction resolution can be achieved in fluorescence imaging of functional materials with densely packed, endogenous, electronically coupled chromophores by modifying stimulated emission depletion (STED) microscopy. This class of chromophores is not generally compatible with STED imaging due to strong two-photon absorption cross sections. Yet, we achieve 90 nm resolution and high contrast in images of clusters of conjugated polymer polyphenylenevinylene-derivative nanoparticles by modulating the excitation intensity in the material. This newfound capability has the potential to significantly broaden the range of fluorophores that can be employed in super-resolution fluorescence imaging. Moreover, solution-processed optoelectronics and photosynthetic or other naturally luminescent biomaterials exhibit complex energy and charge transport characteristics and luminescence variations in response to nanoscale heterogeneity in their complex, physical structures. Our discovery will furthermore transform the current understanding of these materials' structure-function relationships that have until now made them notoriously challenging to characterize on their native, subdiffraction scales.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.5b01200DOI Listing

Publication Analysis

Top Keywords

electronically coupled
8
fluorescence imaging
8
bringing far-field
4
far-field subdiffraction
4
subdiffraction optical
4
imaging
4
optical imaging
4
imaging electronically
4
coupled optoelectronic
4
optoelectronic molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!