AI Article Synopsis

  • Mechanical ventilation can lead to lung injury characterized by inflammation, with the cytokine interleukin-1β (IL-1β) playing a key role in this process.
  • The study involved various mouse models to evaluate the effects of IL-1β, caspase-1, and neutrophil factors on inflammation during mechanical ventilation.
  • Results showed that mechanical ventilation increases IL-1β and neutrophil levels, but the inflammasome/caspase-1 pathway was not critical for processing IL-1β in this inflammatory response.

Article Abstract

Purpose: Mechanical ventilation can cause ventilator-induced lung injury, characterized by a sterile inflammatory response in the lungs resulting in tissue damage and respiratory failure. The cytokine interleukin-1β (IL-1β) is thought to play an important role in the pathogenesis of ventilator-induced lung injury. Cleavage of the inactive precursor pro-IL-1β to form bioactive IL-1β is mediated by several types of proteases, of which caspase-1, activated within the inflammasome, is the most important. Herein, we studied the roles of IL-1β, caspase-1 and neutrophil factors in the mechanical ventilation-induced inflammatory response in mice.

Methods: Untreated wild-type mice, IL-1αβ knockout and caspase-1 knockout mice, pralnacasan (a selective caspase-1 inhibitor)-treated mice, anti-keratinocyte-derived chemokine (KC)-treated mice and cyclophosphamide-treated neutrophil-depleted wild-type mice were ventilated using clinically relevant ventilator settings (tidal volume 8 ml/kg). The lungs and plasma were collected to determine blood gas values, cytokine profiles and neutrophil influx.

Results: Mechanical ventilation resulted in increased pulmonary concentrations of IL-1β and KC and increased pulmonary neutrophil influx compared with non-ventilated mice. Ventilated IL-1αβ knockout mice did not demonstrate this increase in cytokines. No significant differences were observed between wild-type and caspase-1-deficient or pralnacasan-treated mice. In contrast, in anti-KC antibody-treated mice and neutropenic mice, inflammatory parameters decreased in comparison with ventilated non-treated mice.

Conclusions: Our results illustrate that IL-1 is indeed an important cytokine in the inflammatory cascade induced by mechanical ventilation. However, the inflammasome/caspase-1 appears not to be involved in IL-1β processing in this type of inflammatory response. The attenuated inflammatory response observed in ventilated anti-KC-treated and neutropenic mice suggests that IL-1β processing in mechanical ventilation-induced inflammation is mainly mediated by neutrophil factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4797957PMC
http://dx.doi.org/10.1186/2197-425X-1-8DOI Listing

Publication Analysis

Top Keywords

inflammatory response
16
il-1β processing
12
mechanical ventilation-induced
12
neutrophil factors
12
mechanical ventilation
12
mice
11
processing mechanical
8
ventilation-induced inflammation
8
ventilator-induced lung
8
lung injury
8

Similar Publications

Iron regulatory protein 2 (IRP2), a post-transcriptional regulator of cellular iron metabolism has been associated with susceptibility to chronic obstructive pulmonary disease (COPD). Resistive breathing (RB) is the hallmark of the pathophysiology of obstructive airway diseases, especially during exacerbations, where increased mechanical stress is imposed on the lung. We have previously shown that RB, through tracheal banding, mimicking severe airway obstruction, induces pulmonary inflammation and injury in previously healthy mice.

View Article and Find Full Text PDF

Group B (GBS) is a major cause of fetal and neonatal mortality worldwide. Many of the adverse effects of invasive GBS are associated with inflammation; therefore, understanding bacterial factors that promote inflammation is of critical importance. Membrane vesicles (MVs), which are produced by many bacteria, may modulate host inflammatory responses.

View Article and Find Full Text PDF

Background: Systemic diseases are often associated with endothelial cell (EC) dysfunction. A key function of ECs is to maintain the barrier between the blood and the interstitial space. The integrity of the endothelial cell barrier is maintained by VE-Cadherin homophilic interactions between adjacent cells.

View Article and Find Full Text PDF

Background: Injectable biostimulator treatments stimulate endogenous collagen in aging skin, but whether they act through similar pathways is unknown. This study evaluates two biostimulatory agents' effects on genes, expressed proteins, and respective pathways as potential aging biomarkers and treatment outcomes.

Methods: This 13-week, randomized, single-center, comparative study compared volume change and gene expression stimulated by poly-L-lactic acid (PLLA-SCATM) and calcium hydroxylapatite (CaHA-R) via punch biopsy in the nasolabial fold (NLF).

View Article and Find Full Text PDF

The high failure rate of surgical repair for tendinopathies has spurred interest in adjunct therapies, including exosomes (EVs). Mesenchymal stromal cell (MSC)-derived EVs (MSCdEVs) have been of particular interest as they improve several metrics of tendon healing in animal models. However, research has shown that EVs derived from tissue-native cells, such as tenocytes, are functionally distinct and may better direct tendon healing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!