Impact of Electrocatalyst Activity and Ion Permeability on Water-Splitting Photoanodes.

J Phys Chem Lett

Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States.

Published: July 2015

Electrocatalyst (EC)-modified semiconductor (SC) photoelectrodes are key elements of solar water-splitting systems. The SC|EC interface affects the composite photoelectrode behavior but is poorly understood. We uncover the role of EC activity and SC|EC interface properties using a range of metal (Ni, Fe, Ni-Fe, Co, Ir) oxide or (oxy)hydroxide ECs deposited on model single-crystal n-TiO2 photoanodes. The impedance and photoelectrochemical response of the system was nearly independent of EC oxygen evolution activity if the catalyst was deposited electrochemically as an ion-permeable (oxy)hydroxide or hydrous oxide. When dense oxides (e.g., ion-impermeable) ECs were used, the response depended strongly on the EC. These data demonstrate that the EC and SC interface structures are more important than the EC activity in determining the composite photoanode response, confirming recent SC|EC interface simulations for ion-permeable ECs. These results thus inform the design of high-performance water-oxidizing photoanodes with direct SC|EC interfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.5b00904DOI Listing

Publication Analysis

Top Keywords

sc|ec interface
12
impact electrocatalyst
4
activity
4
electrocatalyst activity
4
activity ion
4
ion permeability
4
permeability water-splitting
4
water-splitting photoanodes
4
photoanodes electrocatalyst
4
electrocatalyst ec-modified
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!