Single-Particle Spectroscopic Study on Fluorescence Enhancement by Plasmon Coupled Gold Nanorod Dimers Assembled on DNA Origami.

J Phys Chem Lett

‡BioSyM IRG, Singapore-MIT Alliance for Research and Technology, Singapore 138602.

Published: June 2015

Metal-enhanced fluorescence has attracted much attention due to its scientific importance and lots of potential applications. Plasmon coupled metal nanoparticles have been demonstrated to further improve the enhancement effects. Conventional studies of metal-enhanced fluorescence on the bulk systems are complicated by the ensemble average effects over many critical factors with large variations. Here, fluorescence enhancement of ATTO-655 by a plasmon coupled gold nanorod dimer fixed on a DNA origami nanobreadboard was studied on the single-particle level. A series of gold nanorod dimers with linear orientation and different gap distances ranging from 6.1 to 26.0 nm were investigated to explore the plasmon coupling effect on fluorescence enhancement. The results show that the dimer with the smallest gap (6.1 nm) gives the highest enhancement (470-fold), and the enhancement gradually decreases as the gap distance increases and eventually approaches that from a monomer (120-fold). This trend is consistent with the numerical calculation results. This study indicates that plasmon coupling in gold nanorod dimers offers further increased excitation efficiency to achieve large fluorescence enhancement.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.5b00747DOI Listing

Publication Analysis

Top Keywords

fluorescence enhancement
16
gold nanorod
16
plasmon coupled
12
nanorod dimers
12
coupled gold
8
dna origami
8
metal-enhanced fluorescence
8
plasmon coupling
8
enhancement
7
fluorescence
6

Similar Publications

A Novel cold-active chitin deacetylase from Shewanella psychrophila WP2 (SpsCDA) was overexpressed in Escherichia coli BL21 and employed for deacetylation of chitin to chitosan. The produced chitosan was characterized, and its antifungal activity was investigated against Fusarium oxysporum. The purified recombinant SpsCDA appeared as a single band on SDS-PAGE at approximately 60 kDa, and its specific activity was 92 U/mg.

View Article and Find Full Text PDF

The degradation mechanism of multi-resonance thermally activated delayed fluorescence materials.

Nat Commun

January 2025

Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.

1,4-Azaborine-based arenes are promising electroluminescent emitters with thermally activated delayed fluorescence (TADF), offering narrow emission spectra and high quantum yields due to a multi-resonance (MR) effect. However, their practical application is constrained by their limited operational stability. This study investigates the degradation mechanism of MR-TADF molecules.

View Article and Find Full Text PDF

Synthesis of BODIPYs using organoindium reagents and survey of their cytotoxicity and cell uptake on nervous system cells.

Bioorg Chem

December 2024

Universidade da Coruña, CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultad de Ciencias, Campus A Zapateira, 15071 A Coruña, Spain. Electronic address:

In this study, a series of BODIPY dyes were synthesized, containing various substituents at meso position. Further functionalization of the BODIPY framework at C2 and C2-C6 position(s) by palladium-catalysed cross-coupling reactions using organoindium reagents (RIn) was efficiently assessed, starting from C2(6)-halogenated BODIPYs, and their optical properties were measured. The cytotoxicity of BODIPY dyes on SH-SY5Y neuronal cells by MTT assay showed that those compounds bearing thien-2-yl and benzonitrile moieties at meso position, exhibited great efficiency in maintaining cell viability under all tested conditions (up to 50 µM for 24 h and 48 h).

View Article and Find Full Text PDF

Hederagenin ameliorates ferroptosis-induced damage by regulating PPARα/Nrf2/GPX4 signaling pathway in HT22 cells: An in vitro and in silico study.

Bioorg Chem

December 2024

Institute of Geriatrics, The 2nd Medical Center, China National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China. Electronic address:

Background: Hederagenin (HG), derived from ivy seeds, is known to offer protection against Alzheimer's disease (AD). However, the specific molecular pathways through which it counters ferroptosis-induced neurotoxicity are not fully elucidated. This investigation seeks to delineate the processes by which HG mitigates neurotoxic effects in HT22 cells subjected to glutamate (Glu)-induced ferroptosis.

View Article and Find Full Text PDF

Benzotrithiophene-based covalent organic frameworks for sensitive fluorescence detection and efficient removal of Ag from drinking water.

Talanta

December 2024

Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Macromolecules Science and Processing, Shenzhen University, Shenzhen 518060, China. Electronic address:

The simultaneous detection and removal of Ag from drinking water was crucial for preventing human health, while it was also extremely challenging due to bifunctional materials that combine both Ag adsorption and detection functions rarely being explored. In this study, a benzotrithiophene-based covalent organic framework (TAPA-BTT) was synthesized and applied to detect and remove Ag. TAPA-BTT exhibited high crystallinity, a large specific surface area, and good thermal stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!