Metal Free Azide-Alkyne Click Reaction: Role of Substituents and Heavy Atom Tunneling.

J Phys Chem B

Department of Spectroscopy, Indian Association for the Cultivation of Science , 2A and 2B Raja S. C. Mullick Road, Jadavpur - 700032, Kolkata, West Bengal, India.

Published: September 2015

Metal free click reactions provide an excellent noninvasive tool to modify and understand the processes in biological systems. Release of ring strain in cyclooctynes on reaction with azides on the formation of triazoles results in small activation energies for various intermolecular Huisgen reactions (1-9). Substitution of difluoro groups at the α, α' position of the cyclooctyne ring enhances the rates of cycloadditions by 10 and 20 times for methyl azide and benzyl azide respectively at room temperature. The computed rate enhancement on difluoro substitution using direct dynamical calculations using the canonical variational transition state theory (CVT/CAG) with small curvature tunneling (SCT) corrections are in excellent agreement with the experimental results. For the intramolecular click reaction (10) notwithstanding its much higher activation energy, quantum mechanical tunneling (QMT) enhances the rate of cycloaddition significantly and increases the N(14)/N(15) primary kinetic isotope effect at 298 K. QMT is shown to be rather efficient in 10 due to a thin barrier of ∼2.4 Å. The present study shows that tunneling effects can be significant for intramolecular click reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.5b05758DOI Listing

Publication Analysis

Top Keywords

metal free
8
click reaction
8
click reactions
8
intramolecular click
8
free azide-alkyne
4
click
4
azide-alkyne click
4
reaction role
4
role substituents
4
substituents heavy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!