We report theoretical study of the effects of energy relaxation on the tunneling current through the oxide layer of a two-dimensional graphene field-effect transistor. In the channel, when three-dimensional electron thermal motion is considered in the Schrödinger equation, the gate leakage current at a given oxide field largely increases with the channel electric field, electron mobility, and energy relaxation time of electrons. Such an increase can be especially significant when the channel electric field is larger than 1 kV/cm. Numerical calculations show that the relative increment of the tunneling current through the gate oxide will decrease with increasing the thickness of oxide layer when the oxide is a few nanometers thick. This highlights that energy relaxation effect needs to be considered in modeling graphene transistors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531885 | PMC |
http://dx.doi.org/10.1186/s11671-015-1039-4 | DOI Listing |
Nutrients
January 2025
Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
Objective: In treating obesity, energy intake control is essential to avoid exceeding energy expenditure. However, excessive restriction of energy intake often leads to resting energy expenditure (REE) reduction, increasing hunger and making weight loss difficult. This study aimed to investigate whether providing nutritional guidance that considers energy expenditure based on the regular evaluation of REE and physical activity could effectively reduce body weight (BW) in patients with obesity.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
CITAB-Centre for the Research and Technology of Agro-Environmental and Biological Sciences, School of Science and Technology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal.
Epoxy resins are extensively employed as adhesives and matrices in fibre-reinforced composites. As polymers, they possess a viscoelastic nature and are prone to creep and stress relaxation even at room temperature. This phenomenon is also responsible for time-dependent failure or creep fracture due to cumulative strain.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
China Building Materials Academy, Beijing 100024, China.
xTiO-(1-x)SiO (x = 2.9~8.2 mol%) glass specimens were synthesized using the flame hydrolysis technique.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, HKU-CAS Joint Laboratory on New Materials and Shanghai-Hong Kong Joint Laboratory on Chemical Synthesis, The University of Hong Kong, Hong Kong, China.
High-spin carbon-based polyradicals exhibit significant potential for applications in quantum information storage and sensing; however, their practical application is hampered by limited structural diversity and chemical instability. Here, we report a straightforward synthetic and isolation method for synthesizing a nonalternant nanographene (1) with a triplet ground state. Moving beyond the classic m-xylylene scaffold for high-spin organic molecules, seven-five-seven (7-5-7)-membered rings are introduced to create stable high-spin diradicals with half-lives (t) as long as 101 days.
View Article and Find Full Text PDFJ Magn Reson
January 2025
Center for Magnetic Resonance Research, University of Minnesota, 2021 6th Street SE, Minneapolis, MN 55455, USA. Electronic address:
In this work the effect of the geometric phase on time evolution of the density matrix was evaluated during nonadiabatic radiofrequency (RF) pulses with Sine amplitude modulation (AM) and Cosine frequency modulation (FM) functions of the RAFF (Relaxations Along a Fictitious Field) family, and the polarization between two energy level ½ spin system coupled by dipolar interaction was evaluated during the application of RF irradiation. The dependencies of the diagonal density matrix elements and the polarization on the rotational correlation times and the time during RF pulses were evaluated. The general treatment of the density matrix elements along with the polarization generated during RF pulses was unavailable thus far, and for the first time was here derived for the nonadiabatic case of the RAFF pulses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!