In this article we report on a study of the near-wall dynamics of suspended colloidal hard spheres over a broad range of volume fractions. We present a thorough comparison of experimental data with predictions based on a virial approximation and simulation results. We find that the virial approach describes the experimental data reasonably well up to a volume fraction of ϕ≈ 0.25 which provides us with a fast and non-costly tool for the analysis and prediction of evanescent wave DLS data. Based on this we propose a new method to assess the near-wall self-diffusion at elevated density. Here, we qualitatively confirm earlier results [Michailidou, et al., Phys. Rev. Lett., 2009, 102, 068302], which indicate that many-particle hydrodynamic interactions are diminished by the presence of the wall at increasing volume fractions as compared to bulk dynamics. Beyond this finding we show that this diminishment is different for the particle motion normal and parallel to the wall.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5sm01624jDOI Listing

Publication Analysis

Top Keywords

near-wall dynamics
8
evanescent wave
8
wave dls
8
virial approximation
8
volume fractions
8
experimental data
8
dynamics concentrated
4
concentrated hard-sphere
4
hard-sphere suspensions
4
suspensions comparison
4

Similar Publications

A Near-Wall Methodology for Large-Eddy Simulation Based on Dynamic Hybrid RANS-LES.

Entropy (Basel)

December 2024

Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.

Attempts to mitigate the computational cost of fully resolved large-eddy simulation (LES) in the near-wall region include both the hybrid Reynolds-averaged Navier-Stokes/LES (HRL) and wall-modeled LES (WMLES) approaches. This paper presents an LES wall treatment method that combines key attributes of the two, in which the boundary layer mesh is sized in the streamwise and spanwise directions comparable to WMLES, and the wall-normal mesh is comparable to a RANS simulation without wall functions. A mixing length model is used to prescribe an eddy viscosity in the near-wall region, with the mixing length scale limited based on local mesh size.

View Article and Find Full Text PDF

The mechanism of aneurysm wall enhancement (AWE) in middle cerebral artery (MCA) bifurcation aneurysms on vessel wall magnetic resonance imaging (VW-MRI) remains unclear. We aimed to explore the morphologically related hemodynamic mechanism for the AWE of MCA bifurcation aneurysms. Patients with unruptured MCA bifurcation aneurysms undergoing VW-MRI were enrolled.

View Article and Find Full Text PDF

Purpose: The patchy anatomical distribution of atherosclerosis has been attributed to variation in haemodynamic wall shear stress (WSS). The consensus is that low WSS and a high Oscillatory Shear Index (OSI) trigger the disease. We found that atherosclerosis at aortic branch sites correlates threefold better with transverse WSS (transWSS), a metric which quantifies multidirectional near-wall flow.

View Article and Find Full Text PDF

Comparisons between full molecular dynamics simulation and Zhang's multiscale scheme for nanochannel flows.

J Mol Model

September 2024

College of Mechanical Engineering, Changzhou University, Changzhou, Jiangsu Province, China.

Context: In a very small surface separation, the fluid flow is actually multiscale consisting of both the molecular scale non-continuum adsorbed layer flow and the intermediate macroscopic continuum fluid flow. Classical simulation of this flow often takes over large computational source and is not affordable owing to using molecular dynamics simulation (MDS) to model the adsorbed layer flow, if the flow field size is on the engineering size scale such as of 0.01-10 mm or even bigger like occurring in micro or macro hydrodynamic bearings.

View Article and Find Full Text PDF

Inhomogeneous Fluid Transport Modeling in Dual-Scale Porous Media Considering Fluid-Solid Interactions.

Langmuir

August 2024

John and Willie Leone Family Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Dynamics of fluid transport in ultratight reservoirs such as organic-rich shales differ from those in high-permeable reservoirs due to the complex nature of fluid transport and fluid-solid interaction in nanopores. We present a multiphase multicomponent transport model for primary production and gas injection in shale, considering the dual-scale porosity and intricate fluid-solid interactions. The pore space in the shale matrix is divided into macropores and nanopores based on pore size distribution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!