Background: Salmonella enterica is a common cause of foodborne gastroenteritis in the United States and is associated with outbreaks in fresh produce such as cilantro. Salmonella culture-based detection methods are complex and time consuming, and improvments to increase detection sensitivity will benefit consumers. In this study, we used 16S rRNA sequencing to determine the microbiome of cilantro. We also investigated changes to the microbial community prior to and after a 24-hour nonselective pre-enrichment culture step commonly used by laboratory analysts to resuscitate microorganisms in foods suspected of contamination with pathogens. Cilantro samples were processed for Salmonella detection according to the method in the United States Food and Drug Administration Bacteriological Analytical Manual. Genomic DNA was extracted from culture supernatants prior to and after a 24-hour nonselective pre-enrichment step and 454 pyrosequencing was performed on 16S rRNA amplicon libraries. A database of Enterobacteriaceae 16S rRNA sequences was created, and used to screen the libraries for Salmonella, as some samples were known to be culture positive. Additionally, culture positive cilantro samples were examined for the presence of Salmonella using shotgun metagenomics on the Illumina MiSeq.
Results: Time zero uncultured samples had an abundance of Proteobacteria while the 24-hour enriched samples were composed mostly of Gram-positive Firmicutes. Shotgun metagenomic sequencing of Salmonella culture positive cilantro samples revealed variable degrees of Salmonella contamination among the sequenced samples.
Conclusions: Our cilantro study demonstrates the use of high-throughput sequencing to reveal the microbiome of cilantro, and how the microbiome changes during the culture-based protocols employed by food safety laboratories to detect foodborne pathogens. Finding that culturing the cilantro shifts the microbiome to a predominance of Firmicutes suggests that changing our culture-based methods will improve detection sensitivity for foodborne enteric pathogens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534111 | PMC |
http://dx.doi.org/10.1186/s12866-015-0497-2 | DOI Listing |
Environ Microbiome
January 2025
Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
Background: Recovery of degraded coral reefs is reliant upon the recruitment of coral larvae, yet the mechanisms behind coral larval settlement are not well understood, especially for non-acroporid species. Biofilms associated with reef substrates, such as coral rubble or crustose coralline algae, can induce coral larval settlement; however, the specific biochemical cues and the microorganisms that produce them remain largely unknown. Here, we assessed larval settlement responses in five non-acroporid broadcast-spawning coral species in the families Merulinidae, Lobophyllidae and Poritidae to biofilms developed in aquaria for either one or two months under light and dark treatments.
View Article and Find Full Text PDFChin Med
January 2025
Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
Background: Bear bile powder (BBP), a unique animal-derived medicine with anti-inflammatory and antioxidant effects, is used in Shexiang Tongxin dropping pills (STDP), which is applied to treat cardiovascular diseases, including acute myocardial infarction (AMI). The efficacy and compatibility mechanisms of action of BBP in STDP against cardiovascular diseases remain unclear. This study aimed to investigate the compatibility effects of BBP in STDP in rats with AMI.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic Barcelona, Barcelona, Spain; Departament de Biomedicina, Universitat de Barcelona, Barcelona, Spain. Electronic address:
Mice models serve as a valuable tool to study microbiome-immune system interactions. While the use of germ-free mice may represent the gold-standard method, antibiotic-based microbiome depletion provides a more cost-efficient and feasible system. The protocol here in presented provides a mild antimicrobial regime to deplete basal microbiota in 8-week-old C57BL/6 mice, aiming to ensure reproducibility in microbiota studies.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China. Electronic address:
The widespread commercialization of genetically modified (GM) crops makes it important to assess the potential impact of Bacillus thuringiensis (Bt) on non-target organisms. Pardosa astrigera is an important predator in agroforestry ecosystems, and female and male spiders may react differently to Bt toxins due to their different activity habits and nutritional requirements. In this study, we found that exposure to Cry2Aa protein did not affect the survival and body weight of P.
View Article and Find Full Text PDFFood Chem Toxicol
January 2025
Department of Molecular and Translational Medicine, University of Brescia, Italy.
Background: Methylglyoxal (MGO), a highly reactive precursor of advanced glycation end products (AGEs), is endogenously produced and prevalent in various ultra-processed foods. MGO has emerged as a significant precursor implicated in the pathogenesis of type 2 diabetes and neurodegenerative diseases. To date, the effects of dietary MGO on the intestine have been limited explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!