Quartz crystal microbalance (QCM) sensor array was developed for multi-purpose human respiration assessment. The sensor system was designed to provide feedback for human respiration. Thorough optimization of measurement conditions: air flow, temperature in the QCM chamber, frequency measurement rate, and electrode position regarding to the gas flow-was performed. As shown, acquisition of respiratory parameters (rate and respiratory pattern) could be achieved even with a single electrode used in the system. The prototype system contains eight available QCM channels that can be potentially used for selective responses to certain breath chemicals. At present, the prototype machine is ready for the assessment of respiratory functions in larger populations in order to gain statistical validation. To the best of our knowledge, the developed prototype is the only respiratory assessment system based on surface modified QCM sensors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4570348 | PMC |
http://dx.doi.org/10.3390/s150818834 | DOI Listing |
Talanta
January 2025
Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044, China; School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing, 400044, China. Electronic address:
The effective qualitative and quantitative detection of mixed components of volatile organic compounds (VOCs) with similar molecular structures has always been a challenge and hotpoint in the research. A novel quartz-crystal microbalance (QCM) nanocomposite sensor integrated with a surface-enhanced Raman scattering (SERS) detection platform for multi-component gas analysis was proposed and fabricated in this paper. MIL-100 (Fe)/PAN composite fibers were developed on QCM via electrospinning of polyacrylonitrile (PAN) and hydrothermal synthesis, addressing the integration issues of MIL-100 particles in devices while maintaining high specific surface area.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Technical University of MunichTUM School of Natural Sciences, Department of Chemistry, WACKER-Chair of Macromolecular Chemistry, Lichtenbergstraße 485748 Garching, Germany.
Anal Methods
December 2024
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, BLS 21, Yogyakarta 55281, Indonesia.
A method to detect camphor gas is considered indispensable in the pharmaceutical industry. Unfortunately, the available sensors to detect the presence of camphor in the air are very limited and still on a laboratory scale, such as using chromatography-mass spectroscopy (GC-MS). The research's main focus is to obtain a portable sensing system with excellent sensitivity and selectivity.
View Article and Find Full Text PDFLangmuir
December 2024
Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal.
Immobilization of peptides onto nanofiber dressings holds significant potential for chronic wound treatment. However, it is necessary to understand the adsorptive capacity of the produced substrates and the binding affinity of the peptides to determine the interface success. This study aims at exploring for the first time the influence of electrospun poly(vinyl alcohol)-based nanofibers on the adsorption of a cyclic peptide, Tiger 17, and of a linear peptide, Pexiganan, using quartz crystal microbalance with dissipation monitoring (QCM-D).
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
Ammonia (NH) gas is prevalent in industrial production as a health hazardous gas. Consequently, it is essential to develop a straightforward, reliable, and stable NH sensor capable of operating at room temperature. This paper presents an innovative approach to modifying SnO colloidal quantum dots (CQDs) on the surface of TiCT MXene to form a heterojunction, which introduces a significant number of adsorption sites and enhances the response of the sensor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!