The production rates of titanium dioxide (TiO2) nanoparticles for consumer products far exceed the pace at which research can determine the effects of these particles in the natural environment. Sedentary organisms such as suspension-feeding bivalves are particularly vulnerable to anthropogenic contaminants, such as nanoparticles, that enter coastal environments. The purpose of this work was to examine the ingestion, bioaccumulation, and depuration rates of TiO2 nanoparticles by two species of suspension-feeding bivalves, the blue mussel (Mytilus edulis) and the eastern oyster (Crassostrea virginica). Two representative TiO2 nanoparticles, UV-Titan M212 (Titan) and Aeroxide P25 (P25), were delivered to the animals either incorporated into marine snow or added directly to seawater at a concentration of 1.0 mg/L for exposure periods of 2 and 6 h. After feeding, the animals were transferred to filtered-seawater and allowed to depurate. Feces and tissues were collected at 0, 12, 24, 72, and 120 h, post-exposure, and analyzed for concentrations of titanium by inductively coupled plasma-mass spectrometry. Results indicated that the capture and ingestion (i.e., transfer to the gut) of TiO2 nanoparticles by both mussels and oysters was not dependent on the presence of marine snow, and weight-standardized clearance rates of bivalves exposed to TiO2 nanoparticles were not significantly different than those of unexposed control animals. Both species ingested about half of the nanoparticles to which they were exposed, and >90% of the nanoparticles were egested in feces within 12 h, post-exposure. The findings of this study demonstrate that mussels and oysters can readily ingest both Titan and P25 nanoparticles regardless of the form in which they are encountered, but depurate these materials over a short period of time. Importantly, bioaccumulation of Titan and P25 nanoparticles does not occur in mussels and oysters following exposures of up to 6 h.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2015.07.020DOI Listing

Publication Analysis

Top Keywords

tio2 nanoparticles
20
mussels oysters
12
nanoparticles
11
ingestion bioaccumulation
8
bioaccumulation depuration
8
titanium dioxide
8
blue mussel
8
mussel mytilus
8
mytilus edulis
8
edulis eastern
8

Similar Publications

In this present investigation, plant-mediated synthesis of titanium oxide (TiO) nanoparticles was synthesized from seagrass (Thalassia hemprichi) using the hot plate combustion method (HPCM). Synthesized TiO nanoparticles optical, functional, structural, and morphology properties were analyzed by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). SEM analysis confirmed the spherical shape of the TiO nanoparticles were observed in various sizes, viz.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Ecole polytechnique - CNRS UMR7654, Palaiseau, Ile-de-France, France; Université Paris Cité - Inserm UMR-S1124, Paris, Ile-de-France, France.

Alzheimer's disease (AD) is the most common dementia in humans that today concerns 50 million individuals worldwide and will affect more than 100 million people in 2050. Except for familial AD cases (<5% of AD patients) for which AD pathology connects to mutations in critical genes involved in the processing of the amyloid precursor protein into neurotoxic Aß peptides, it remains unknown what provokes the overproduction and deposition of Aß peptides in the brain of sporadic AD cases (>95% of AD patients). Some nanosized materials, e.

View Article and Find Full Text PDF

X-ray induced photodynamic therapy (XPDT) utilizes self-lighting nanoparticles to combine the benefits of radiotherapy and photodynamic therapy. These nanomaterials transform X-ray to visible light that can be absorbed by nearby photosensitizers and in the presence of surrounding oxygen molecules generates reactive oxygen species, which are very toxic to the cells. Despite many studies conducted on modelling XPDT, little focused on the contribution of each component as well as their synergy effects.

View Article and Find Full Text PDF

Salinity is one of the predominant abiotic stressors that reduce plant growth, yield, and productivity. Ameliorating salt tolerance through nanotechnology is an efficient and reliable methodology for enhancing agricultural crops yield and quality. Nanoparticles enhance plant tolerance to salinity stress by facilitating reactive oxygen species detoxification and by reducing the ionic and osmotic stress effects on plants.

View Article and Find Full Text PDF

Highly flexible free-standing bacterial cellulose-based filter membrane with tunable wettability for high-performance water purification.

Int J Biol Macromol

December 2024

Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China. Electronic address:

Water purification has always been a critical yet challenging issue. In this study, an organic-inorganic composite membrane was developed using 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized bacterial cellulose (BC) nanofibers and hydroxyapatite nanowires (HAPNW) with tunable wettability for advanced membrane separation applications. The resulting free-standing TEMPO-BC/HAPNW filter membrane exhibited strong mechanical strength, high flexibility, exceptional deformability, and a high pure water flux of up to 800 L·m·h due to its porous architecture and inherent hydrophilicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!