Stable isotope analysis is a useful tool to track animal movements in both terrestrial and marine environments. These intrinsic markers are assimilated through the diet and may exhibit spatial gradients as a result of biogeochemical processes at the base of the food web. In the marine environment, maps to predict the spatial distribution of stable isotopes are limited, and thus determining geographic origin has been reliant upon integrating satellite telemetry and stable isotope data. Migratory sea turtles regularly move between foraging and reproductive areas. Whereas most nesting populations can be easily accessed and regularly monitored, little is known about the demographic trends in foraging populations. The purpose of the present study was to examine migration patterns of loggerhead nesting aggregations in the Gulf of Mexico (GoM), where sea turtles have been historically understudied. Two methods of geographic assignment using stable isotope values in known-origin samples from satellite telemetry were compared: (1) a nominal approach through discriminant analysis and (2) a novel continuous-surface approach using bivariate carbon and nitrogen isoscapes (isotopic landscapes) developed for this study. Tissue samples for stable isotope analysis were obtained from 60 satellite-tracked individuals at five nesting beaches within the GoM. Both methodological approaches for assignment resulted in high accuracy of foraging area determination, though each has advantages and disadvantages. The nominal approach is more appropriate when defined boundaries are necessary, but up to 42% of the individuals could not be considered in this approach. All individuals can be included in the continuous-surface approach, and individual results can be aggregated to identify geographic hotspots of foraging area use, though the accuracy rate was lower than nominal assignment. The methodological validation provides a foundation for future sea turtle studies in the region to inexpensively determine geographic origin for large numbers of untracked individuals. Regular monitoring of sea turtle nesting aggregations with stable isotope sampling can be used to fill critical data gaps regarding habitat use and migration patterns. Probabilistic assignment to origin with isoscapes has not been previously used in the marine environment, but the methods presented here could also be applied to other migratory marine species.

Download full-text PDF

Source
http://dx.doi.org/10.1890/14-0581.1DOI Listing

Publication Analysis

Top Keywords

stable isotope
20
migratory marine
8
stable isotopes
8
isotope analysis
8
marine environment
8
geographic origin
8
satellite telemetry
8
sea turtles
8
migration patterns
8
nesting aggregations
8

Similar Publications

Intra-Individual Stable Isotope Variation Tracks Brazilian Contemporary Dietary and Nutritional Transition.

Am J Biol Anthropol

January 2025

Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.

Introduction: Contemporary dietary and nutritional transitions are commonplace, but difficult to study directly. In Brazil, and Latin America, this generalized process, leading to current obesity and malnutrition problems, started more than four decades ago. Although body weight and food availability are used to measure changes, not much information on food consumption and nutrition exist.

View Article and Find Full Text PDF

Off-seasonal water level regulations disrupt the biological traits and phenological rhythms of native fish species, yet their impacts on interspecific trophic interactions remain understudied. This study employed stable isotope analysis to assess the trophic dynamics of three fish species (, , and ) across different water periods in Hongze Lake. The findings revealed that all three species occupied similar mid-level trophic positions, with no significant difference among water periods ( > 0.

View Article and Find Full Text PDF

The submarine groundwater discharge (SGD) into the sea is known to alter various biotic and abiotic properties of coastal waters. However, its influence on the lower trophic levels, namely, meiofauna, is poorly understood. This study highlights the impact of SGD on the density, distribution, and diversity of intertidal meiofaunal communities along the subterranean estuaries (STEs) of the southwest coast of India (Arabian Sea).

View Article and Find Full Text PDF

Migration routes and the depth patterns of anguillid eel larvae migrating long distances from spawning grounds in the ocean remain poorly understood. We used otolith stable isotope analysis to study the oceanic migrations of anguillid eels by reconstructing experienced water temperature histories of larvae. The otolith stable oxygen isotopes (δO) of recruited Anguilla japonica glass eels were analyzed to assess the relationship with the experienced water temperature of the early larval stage in laboratory experiments.

View Article and Find Full Text PDF

Effects of Long-Term Storage on the Isotopic Compositions of Different Types of Environmental Waters.

Rapid Commun Mass Spectrom

April 2025

Department of Earth and Environmental Sciences, Indiana University Indianapolis, Indianapolis, Indiana, USA.

Rationale: Fog, dew, and rain are crucial for sustaining ecosystem functions, especially in water-limited regions. However, they are subject to isotopic changes during storage due to their usual small sample volumes and inherent sensitivity to atmospheric particulates. Understanding long-term storage effects on these water samples is essential for ensuring isotopic integrity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!