Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The fates of photochemically formed πσ* states are one of the central issues in photobiology due to their significant contribution to the photostability of biological matter, formation of hydrated electrons, and the phenomenon of photoacidity. Nevertheless, our understanding of the underlying molecular mechanisms in aqueous solution is still incomplete. In this paper, we report on the results of nonadiabatic photodynamics simulations of microhydrated 2-aminooxazole molecule employing algebraic diagrammatic construction to the second order. Our results indicate that electron-driven proton transfer along H2O wires induces the formation of πσ*/S0 state crossing and provides an effective deactivation channel. Because we recently have identified a similar channel for 4-aminoimidazole-5-carbonitrile [Szabla, R.; Phys. Chem. Chem. Phys. 2014, 16, 17617-17626 ], we conclude this mechanism may be quite common to all heterocyclic compounds with low-lying πσ* states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.5b00261 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!