Sucralose Destabilization of Protein Structure.

J Phys Chem Lett

†Department of Physics, Wesleyan University, 265 Church Street, Middletown, Connecticut 06459, United States.

Published: April 2015

Sucralose is a commonly employed artificial sweetener that behaves very differently than its natural disaccharide counterpart, sucrose, in terms of its interaction with biomolecules. The presence of sucralose in solution is found to destabilize the native structure of two model protein systems: the globular protein bovine serum albumin and an enzyme staphylococcal nuclease. The melting temperature of these proteins decreases as a linear function of sucralose concentration. We correlate this destabilization to the increased polarity of the molecule. The strongly polar nature is manifested as a large dielectric friction exerted on the excited-state rotational diffusion of tryptophan using time-resolved fluorescence anisotropy. Tryptophan exhibits rotational diffusion proportional to the measured bulk viscosity for sucrose solutions over a wide range of concentrations, consistent with a Stokes-Einstein model. For sucralose solutions, however, the diffusion is dependent on the concentration, strongly diverging from the viscosity predictions, and results in heterogeneous rotational diffusion.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.5b00442DOI Listing

Publication Analysis

Top Keywords

rotational diffusion
12
sucralose
5
sucralose destabilization
4
destabilization protein
4
protein structure
4
structure sucralose
4
sucralose commonly
4
commonly employed
4
employed artificial
4
artificial sweetener
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!