Quantum dots at the hexane-glycerol interface exhibited unexpected behavior including highly dynamic adsorption/desorption, where the lateral nanoparticle motion was anomalously fast immediately after adsorption and prior to desorption. At the interface, particles exhibited pseudo-Brownian lateral motion, in which the instantaneous diffusion coefficient was temporally anticorrelated, in agreement with our simulations involving fractional Brownian motion in the surface-normal direction. These phenomena suggest that, in contrast to the conventional picture for colloidal particles, nanoparticles explore a landscape of metastable interfacial positions, with different exposures to the two adjacent phases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jz502210c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!