This Perspective highlights progress in ab initio quantum approaches to IR spectroscopy of water and hydrates. Here, "ab initio" refers to many-body potentials and dipole moment surfaces for flexible water and hydrates. Specifically, these are mathematical representations of two-body and three-body interactions based on permutationally invariant fitting of tens of thousands of ab initio electronic energies, a spectroscopically accurate one-body monomer potential, and four- and higher-body interactions described by the long-range interactions incorporated into, for example, the TTM3-F family of potentials. There are currently two such potentials of this type, denoted WHBB and MB-pol, which are being used in expanding applications. Here, the focus is on infrared spectroscopy, using the WHBB potential and dipole moment surface, with an embedded, local monomer quantum method to obtain vibrational energies and dipole transition moments. Comparisons are also made with the popular q-TIP4P/F potential. Brief mention is made of an application to small HCl-H2O clusters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jz502196f | DOI Listing |
Nat Commun
December 2024
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
Electrochemical nitrate reduction reaction offers a sustainable and efficient pathway for ammonia synthesis. Maintaining satisfactory Faradaic efficiency for long-term nitrate reduction under ampere-level current density remains challenging due to the inevitable hydrogen evolution, particularly in pure nitrate solutions. Herein, we present the application of electron deficiency of Ru metals to boost the repelling effect of counter K ions via the electric-field-dependent synergy of interfacial water and cations, and thus largely promote nitrate reduction reaction with a high yield and well-maintained Faradaic efficiency under ampere-level current density.
View Article and Find Full Text PDFLangmuir
December 2024
Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan.
In the present study, we deposited buffer solutions containing hydrophobic (GA) fibrils onto highly oriented pyrolytic graphite (HOPG) and imaged the surfaces through atomic force microscopy (AFM). Within 3 h of applying ambient (nondegassed) buffers, we observed the formation of two-dimensional stripe-like domains on the HOPG surfaces surrounding the (GA) fibrils. However, these stripe domains did not form under degassed buffers.
View Article and Find Full Text PDFBio Protoc
December 2024
School of Bioengineering, Dalian University of Technology, Dalian, China.
Cryo-electron microscopy (cryo-EM) is a powerful technique capable of investigating samples in a hydrated state, compared to conventional high-vacuum electron microscopy that requires samples to be completely dry. During the drying process, numerous features and details may be lost due to damage caused by dehydration. Cryo-EM circumvents these problems by cryo-fixing the samples, thereby retaining the intact and original features of hydrated samples.
View Article and Find Full Text PDFWater Sci Technol
December 2024
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
Hexafluoropropylene oxide trimer acid (HFPO-TA) is an emerging alternative to traditional perfluoroalkyl substances (PFASs), which is characterized by its biotoxicity and persistence. The UV/sulfite/iodide photo-induced hydrated electrons system can effectively degrade HFPO-TA under mild conditions. However, the effects of water quality on this system need to be urgently investigated.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India.
The dielectric behavior of Asparagine (CHNO) in water over the frequency range of 10 MHz to 30 GHz in the temperature region of 278.15-303.15 K in a step of 5 K has been carried out using time domain reflectometry (TDR) at various concentrations of asparagine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!