microRNAs (miRNAs) are a class of small non-coding RNAs that play important roles in a variety of biological process. It has been reported that dysregulation of miRNA is always associated with cancer progression and development, and miR-378 aberrant expression has been found in some types of cancers. However, the association of miR-378 and glioma has not been evaluated. In this work, we measured the expression of miR-378 in glioma tissues and non-neoplastic brain tissues was measured using real-time PCR, and found that miRNA-378 expression level was significantly lower in glioma tissues compared with non-neoplastic brain tissues. Patients with lower miR-378 expression level had significantly poorer overall survival. Multivariate Cox regression analysis showed that miR-378 expression was an independent prognostic factor for 5-year overall survival. Over-expression of miR-378 inhibits glioma cell migration and invasion. In conclusion, our results indicated that miR-378 may serve as a tumor suppressor and play an important role in inhibiting tumor migration and invasion. Our work implicates the potential effect of miR-378 on the prognosis of glioma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525926PMC

Publication Analysis

Top Keywords

mir-378
9
expression mir-378
8
mir-378 glioma
8
glioma tissues
8
non-neoplastic brain
8
brain tissues
8
expression level
8
mir-378 expression
8
migration invasion
8
glioma
6

Similar Publications

Background And Aims: Type 2 diabetes mellitus (T2DM) is usually complicated by cardiovascular diseases, hyperglycemia, and obesity, which worsen the outcome for the patient. Since recent evidence underlines the epigenetic role of glucagon-like peptide-1 receptor agonists (GLP-1RAs) in the management of these comorbidities, this study compared the effects of these agents, namely liraglutide, semaglutide, dulaglutide, and exenatide, on miRNA regulation in the management of T2DM.

Results: GLP-1RAs modify the expression of miRNAs involved in endothelial function, sugar metabolism, and adipogenesis, including but not limited to miR-27b, miR-130a, and miR-210.

View Article and Find Full Text PDF

MiR-378 exaggerates angiogenesis and bone erosion in collagen-induced arthritis mice by regulating endoplasmic reticulum stress.

Cell Death Dis

December 2024

Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China.

Rheumatoid arthritis (RA) is a chronic autoimmune disorder marked by pain, inflammation, and discomfort in the synovial joints. It is critical to understand the pathological mechanisms of RA progression. MicroRNA-378 (miR-378) is highly expressed in the synovium of RA patients and positively correlated with disease severity, but its function and underlying mechanisms remain poorly understood.

View Article and Find Full Text PDF

Middle Ear microRNAs Drive Mucin Gene Response.

Laryngoscope

November 2024

Division of Otolaryngology, Sheikh Zayed Center for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.

Objective(s): To investigate the role of microRNA-378 (miR-378) in the regulation of mucin gene expression and inflammatory response in human middle ear epithelial cells (HMEEC) during bacterial infection by non-typeable Haemophilus influenzae (NTHi).

Methods: Human middle ear epithelial cells (HMEEC) were cultured and transfected with miR-378 or control miRNA. Post-transfection, cells were exposed to NTHi lysates.

View Article and Find Full Text PDF

Ythdf2 is known to mediate mRNA degradation in an mA-dependent manner, and it has been shown to play a role in skeletal muscle differentiation. Recently, Ythdf2 was also found to bind to mA-modified precursor miRNAs and regulate their maturation. However, it remains unknown whether this mechanism is related to the regulation of myogenesis by Ythdf2.

View Article and Find Full Text PDF

Subsequently to the publication of the above paper, an interested reader drew to the authors' attention that, for the cell migration and invasion assay experiments shown in Fig. 2 on p. 6322, the 'HeLa/miR‑378 inhibitor' panels in Fig.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!