Effects of GPNMB on proliferation and odontoblastic differentiation of human dental pulp cells.

Int J Clin Exp Pathol

Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University Jinan 250012, China.

Published: May 2016

Glycoprotein (transmembrane) nonmetastatic melanoma protein b (GPNMB) plays crucial roles in odontogenesis. However, the role of GPNMB in human dental pulp cells (hDPCs) is still unclear. Therefore, in this study, we investigated the expression and function of the GPNMB in odontoblastic differentiation of hDPCs. Cells were cultured in odontoblast differentiation-inducing medium; the expression of the GPNMB was assessed by reverse transcriptase polymerase chain reaction and Western blot analysis. We performed gene knockdown of GPNMB in hDPCs using lentivirus-mediated small interfering RNA (siRNA)-GPNMB. The proliferation of cells was measured by the MTT assay, and the differentiation of cells was detected with alkaline phosphatase (ALP) activity assay, qRT-PCR and Western blot were used to determine the expression levels of dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1). The expression level of GPNMB was significantly increased during odontoblastic differentiation of hDPCs. Suppression of GPNMB expression by siRNA-GPNMB obviously promoted the proliferation of hDPCs. Furthermore, siRNA-GPNMB significantly inhibited the activity of ALP and expression levels of DSPP and DMP-1 during odontoblastic differentiation of hDPCs. Our results show that GPNMB plays an important role in regulating the expression of key pluripotency genes in hDPCs and modifying odontogenic differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525861PMC

Publication Analysis

Top Keywords

odontoblastic differentiation
16
differentiation hdpcs
12
human dental
8
dental pulp
8
pulp cells
8
gpnmb
8
gpnmb plays
8
western blot
8
expression levels
8
hdpcs
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!