Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Various models of tumour growth are available in the literature. The first type describe the evolution of the cell number density when considered as a continuous visco-elastic material with growth. The second type describe the tumour as a set, and rules for the free boundary are given related to the classical Hele-Shaw model of fluid dynamics. Following previous papers where the material is described by a purely elastic material, or when active cell motion is included, we make the link between the two types of description considering the 'stiff pressure law' limit. Even though viscosity is a regularizing effect, new mathematical difficulties arise in the visco-elastic case because estimates on the pressure field are weaker and do not immediately imply compactness. For instance, travelling wave solutions and numerical simulations show that the pressure is discontinuous in space, which is not the case for an elastic material.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4535270 | PMC |
http://dx.doi.org/10.1098/rsta.2014.0283 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!