Background: Residents are being increasingly challenged on how best to integrate diagnostic information in making decisions about patient care. The aim of this study is to assess the ability of residents to accurately integrate statistical data from a screening mammography test in order to estimate breast cancer probability and to investigate whether a simple alteration of the representation mode of probabilities into natural frequencies facilitates these computations.
Methods: A multi-institutional randomized controlled study of residents was performed in eight major hospitals in the city of Athens. Residents were asked to estimate the positive predictive value of the screening mammography test given its sensitivity and 1-specificity as well as the prevalence of breast cancer in the relevant population. One version of the scenario was presented in the single-event probability format that is commonly used in the medical literature, while the other used the natural frequency representation. The two questionnaire versions were randomly assigned to the participants.
Results: Out of 200 residents, 153 completed and returned the questionnaire (response rate 76.5%). Although more than one-third of the residents reported excellent or close to excellent familiarity with sensitivity and positive predictive value, the majority of responses (79.1%) were incorrect. However, a significantly higher proportion of residents in the natural frequency group (n = 88) selected the correct response compared with residents (n = 65) in the single-event probability group (28.4% vs 10.8%; 95% confidence intervals of the difference between the two proportions = 5.6-29.7%; P < 0.01).
Discussion: Residents more often correctly understand test performance accuracy when test characteristics are presented to them as natural frequency representations than the more common approach of presenting single event probabilities. Educators and journal editors should be aware of this facilitative effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4103/1357-6283.161846 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!