CeF3 nanophosphors have been extensively investigated in recent years for lighting and numerous bio-applications. Downconversion emissions in CeF3:Eu(3+)/Tb(3+) phosphors were studied with the objective of attaining a white light emitting composition, by means of a simple co-precipitation method. The material was characterized by X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR) and Photoluminescence (PL). Uniformly distributed nanoparticles were obtained with an average particle size range of 8-10 nm. Various studies were undertook utilizing different doping concentrations and respective fluorescence studies were carried out to optimize dopant concentrations while achieving maximum luminescence intensity. From PL results, it was observed that the efficient energy transfers from the donor to the acceptor ions. Different concentrations of Tb(3+), Eu(3+) were doped in order to achieve a white light emitting phosphor for UV-based Light Emitting Diodes (LEDs). The nanoparticles showed characteristic emission of respective dopants (Eu(3+), Tb(3+)) when excited at the 4fâââ5d transition of Ce(3+). The chromaticity coordinates for CeF3 doped with Eu(3+) and Tb(3+) were calculated and an emission very close to white light was observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10895-015-1641-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!