A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Differential tissue accumulation of 2,3,7,8-Tetrachlorinated dibenzo-p-dioxin in Arabidopsis thaliana affects plant chronology, lipid metabolism and seed yield. | LitMetric

Background: Dioxins are one of the most toxic groups of persistent organic pollutants. Their biotransmission through the food chain constitutes a potential risk for human health. Plants as principal actors in the food chain can play a determinant role in removing dioxins from the environment. Due to the lack of data on dioxin/plant research, this study sets out to determine few responsive reactions adopted by Arabidopsis plant towards 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most toxic congener of dioxins.

Results: Using a high resolution gas chromatography/mass spectrometry, we demonstrated that Arabidopsis plant uptakes TCDD by the roots and accumulates it in the vegetative parts in a tissue-specific manner. TCDD mainly accumulated in rosette leaves and mature seeds and less in stem, flowers and immature siliques. Moreover, we observed that plants exposed to high doses of TCDD exhibited a delay in flowering and yielded fewer seeds of a reduced oil content with a low vitality. A particular focus on the plant fatty acid metabolism showed that TCDD caused a significant reduction in C18-unsaturated fatty acid level in plant tissues. Simultaneously, TCDD induced the expression of 9-LOX and 13-LOX genes and the formation of their corresponding hydroperoxides, 9- and 13-HPOD as well as 9- or 13-HPOT, derived from linoleic and linolenic acids, respectively.

Conclusions: The current work highlights a side of toxicological effects resulting in the administration of 2,3,7,8-TCDD on the Arabidopsis plant. Similarly to animals, it seems that plants may accumulate TCDD in their lipids by involving few of the FA-metabolizing enzymes for sculpting a specific oxylipins "signature" typified to plant TCDD-tolerance. Together, our results uncover novel responses of Arabidopsis to dioxin, possibly emerging to overcome its toxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531507PMC
http://dx.doi.org/10.1186/s12870-015-0583-5DOI Listing

Publication Analysis

Top Keywords

arabidopsis plant
12
food chain
8
fatty acid
8
plant
7
tcdd
7
arabidopsis
5
differential tissue
4
tissue accumulation
4
accumulation 2378-tetrachlorinated
4
2378-tetrachlorinated dibenzo-p-dioxin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!