As the most important detoxifying enzymes in liver, glutathione S-transferases (GSTs) can protect hepatocytes against carcinogens. We conducted a large cohort study to investigate the prognostic value of single nucleotide polymorphisms (SNPs) in seven encoding genes of GSTs for hepatocellular carcinoma (HCC). Twelve SNPs were genotyped and correlated with overall survival in 469 HCC patients. The median follow-up time of all patients was 21 (range 3-60) months, and the median survival time was 22 months. By the end of the study, 135 (28.8 %) patients were alive. Only rs4147581 in GSTP1 gene exhibited a significant association with survival of HCC patients (P = 0.006), with its mutant allele bearing a significantly lower risk of death (hazard ratio, 0.71; 95 % confidence interval 0.53-0.90), compared with the homozygous wide-type. A longer median survival time in patients with rs4147581 mutant allele was noticed than those homozygous wide-type (P = 0.03), and there was a marked adverse effect on survival conferred by smoking exposure in these patients. Conclusively, our findings provide supporting evidence for a contributory role of GSTP1 rs4147581 polymorphism in predicting the prognosis of HCC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13277-015-3871-7DOI Listing

Publication Analysis

Top Keywords

rs4147581 polymorphism
8
hepatocellular carcinoma
8
hcc patients
8
time patients
8
median survival
8
survival time
8
mutant allele
8
homozygous wide-type
8
patients
7
survival
6

Similar Publications

Background: Chronic obstructive pulmonary disease (COPD) is a chronic respiratory ailment influenced by a blend of genetic and environmental factors. Inflammatory response and an imbalance in oxidative-antioxidant mechanisms constitute the primary pathogenesis of COPD. Glutathione S-transferase P1(GSTP1) plays a pivotal role as an antioxidant enzyme in regulating oxidative-antioxidant responses in the pulmonary system.

View Article and Find Full Text PDF

Glutathione-related genetic polymorphisms are associated with mercury retention and nephrotoxicity in gold-mining settings of a Colombian population.

Sci Rep

April 2021

Grupo de Inmunología y Epidemiología Molecular, Escuela de Microbiología, Universidad Industrial de Santander, Carrera 32 No. 29-31; Building Roberto Serpa, Floor 5, Office 5, Bucaramanga, Colombia.

Mercury (Hg) vapor can produce kidney injury, where the proximal tubule region of the nephron is the main target of the Hg-induced oxidative stress. Hg is eliminated from the body as a glutathione conjugate. Thus, single nucleotide polymorphisms (SNPs) in glutathione-related genes might modulate the negative impact of this metal on the kidneys.

View Article and Find Full Text PDF

As the most important detoxifying enzymes in liver, glutathione S-transferases (GSTs) can protect hepatocytes against carcinogens. We conducted a large cohort study to investigate the prognostic value of single nucleotide polymorphisms (SNPs) in seven encoding genes of GSTs for hepatocellular carcinoma (HCC). Twelve SNPs were genotyped and correlated with overall survival in 469 HCC patients.

View Article and Find Full Text PDF

Polymorphisms of glutathione S-transferase genes and survival of resected hepatocellular carcinoma patients.

World J Gastroenterol

April 2015

Kai Qu, Su-Shun Liu, Zhi-Xin Wang, Zi-Chao Huang, Si-Nan Liu, Hu-Lin Chang, Xin-Sen Xu, Ting Lin, Chang Liu, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China.

Aim: To investigate the effects of single nucleotide polymorphisms (SNPs) in glutathione S-transferase (GST) genes on survival of hepatocellular carcinoma (HCC) patients.

Methods: Twelve tagging SNPs in GST genes (including GSTA1, GSTA4, GSTM2, GSTM3, GSTO1, GSTO2 and GSTP1) were genotyped using Sequenom MassARRAY iPLEX genotyping method in a cohort of 214 Chinese patients with resected HCC. The Cox proportional hazards model and log-rank test were performed to determine the SNPs related to outcome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!