Thermophilic Campylobacter species colonize the intestine of agricultural and domestic animals commensally but cause severe gastroenteritis in humans. In contrast to other enteropathogenic bacteria, Campylobacter has been considered to be non-glycolytic, a metabolic property originally used for their taxonomic classification. Contrary to this dogma, we demonstrate that several Campylobacter coli strains are able to utilize glucose as a growth substrate. Isotopologue profiling experiments with (13) C-labeled glucose suggested that these strains catabolize glucose via the pentose phosphate and Entner-Doudoroff (ED) pathways and use glucose efficiently for de novo synthesis of amino acids and cell surface carbohydrates. Whole genome sequencing of glycolytic C. coli isolates identified a genomic island located within a ribosomal RNA gene cluster that encodes for all ED pathway enzymes and a glucose permease. We could show in vitro that a non-glycolytic C. coli strain could acquire glycolytic activity through natural transformation with chromosomal DNA of C. coli and C. jejuni subsp. doylei strains possessing the ED pathway encoding plasticity region. These results reveal for the first time the ability of a Campylobacter species to catabolize glucose and provide new insights into how genetic macrodiversity through intra- and interspecies gene transfer expand the metabolic capacity of this food-borne pathogen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mmi.13159 | DOI Listing |
Lett Appl Microbiol
January 2025
Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan, China.
Levilactobacillus brevis YT108, identified for its ability to metabolize prebiotic xylo-oligosaccharides (XOS), emerges as a candidate for probiotic use in synbiotic food formulations. This study aimed to investigate the metabolic and genomic traits associated with XOS metabolism in YT108 and to assess its probiotic attributes through whole genome sequencing and in vitro assays. Strain YT108 exhibited robust growth kinetics on XOS as the sole carbon source, with a growth profile comparable to that on glucose, achieving a pH reduction to 4.
View Article and Find Full Text PDFJ Oleo Sci
January 2025
Botany and Microbiology Department, Faculty of Science, King Saud University.
The present study aimed to explore the potential of macroalgal hydrolysate to serve as an economical substrate for the growth of the oleaginous microbes Aspergillus sp. SY-70, Rhizopus arrhizus SY-71 and Aurantiochytrium sp. YB-05 for lipid and DHA production under laboratory conditions.
View Article and Find Full Text PDFBiol Pharm Bull
January 2025
Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan.
The hypoglycemic effects of nateglinide (NTG) were examined in rats with acute peripheral inflammation (API) induced by carrageenan treatment, and the mechanisms accounting for altered hypoglycemic effects were investigated. NTG was administered through the femoral vein in control and API rats, and its plasma concentration profile was characterized. The time courses of the changes in plasma glucose and insulin levels were also examined.
View Article and Find Full Text PDFExp Anim
January 2025
Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine.
In most cases, the diagnosis of diabetes in animal models is based solely on blood glucose levels. While hemoglobin A1c (HbA1c) is widely used in the diagnosis of diabetes in humans, it is rarely measured in mice in diabetes research. This is thought to be because there are no established reference values for mouse HbA1c, as well as the fact that there are very few reports on the variability and reproducibility of measurements taken using different devices.
View Article and Find Full Text PDFBMJ Open
January 2025
Public Health School, Jining Medical University, Jining, China
Objectives: To explore whether metabolically healthy overweight (MHOW) and/or metabolically healthy obesity (MHO) increase hyperglycaemia risk in a Chinese population with a broad age range.
Design: Retrospective cohort study.
Setting: Secondary analysis of data from the DATADRYAD database, comprising health check records of participants from 32 regions and 11 cities in China between 2010 and 2016.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!