Taking soils in a long-term experimental field over 29 years with different land uses types, including arable land, bare land, grassland and larch forest land as test materials, the distribution and storage of soil organic carbon (SOC) in the profile (0-200 cm) in typical black soil (Mollisol) region of China were investigated. The results showed that the most significant differences in SOC content occurred in the 0-10 cm surface soil layer among all soils with the order of grassland > arable land > larch forest land > bare land. SOC contents at 10-120 cm depth were lower in arable land as compared with the other land use types. Compared with arable land, grassland could improve SOC content obviously. SOC content down to a depth of 60 cm in grassland was significantly higher than that in arable land. The content of SOC at 0-10 cm in bare land was significantly lower than that in arable land. Although there were no significant differences in SOC content at 0-20 cm depth between larch forestland and arable land, the SOC contents at 20-140 cm depth were generally higher in larch forestland than that in arable land. In general, SOC content showed a significantly negative relationship with soil pH, bulk density, silt and clay content and an even stronger significantly positive relationship with soil total N content and sand content. The SOC storage in arable land at 0-200 cm depth was significantly lower than that in the other three land use types, which was 13.6%, 11.4% and 10.9% lower than in grassland, bare land and larch forest land, respectively. Therefore, the arable land of black soil has a great potential for sequestering C in soil and improving environmental quality.
Download full-text PDF |
Source |
---|
Cell Rep
January 2025
State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:
Pseudomonas syringae deploys a type III secretion system (T3SS) to deliver effector proteins to facilitate infection of plant cells; however, little is known about the direct interactions between T3SS components and plants. Here, we show that the specialized lytic transglycosylase (SLT) domain of P. syringae pv.
View Article and Find Full Text PDFSci Rep
January 2025
College of Jilin Emergency Management, Changchun Institute of Technology, Changchun, 130012, China.
Globally, heavy metal (HM) soil pollution is becoming an increasingly serious concern. Heavy metals in soils pose significant environmental and health risks due to their persistence, toxicity, and potential for bioaccumulation. These metals often originate from anthropogenic activities such as industrial emissions, agricultural practices, and improper waste disposal.
View Article and Find Full Text PDFWaste Manag
December 2024
Key Laboratory of Agro-Environment in Downstream of Yangtze Plain/Scientific Observing and Experimental Station of Arable Land Conservation (Jiangsu), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China. Electronic address:
Sci Total Environ
December 2024
College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, China.
Roughly 10 % of the world's arable land is affected by salinization, which significantly reducing crop yields, degrading soil health, and posing a serious threat to food security and ecological stability. High-efficient water-saving irrigation (HEI) technologies have showed positive effects on crop yield, especially with long-term application in salinized soil fields. However, the microbial mechanisms and influential pathways that promote crop yield and reduce salinity under consecutive HEI remain unclear.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Department of Urban and Rural Planning, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China. Electronic address:
Cropland changes are crucial aspects of land-use/land-cover changes (LUCC), which profoundly influence agricultural sustainability and terrestrial ecosystem health. In the context of dynamic shifts within the natural environment, coupled with the evolution of agricultural practices and the transformation of agrarian systems and policies, the trajectory of farmland alteration has exhibited significant divergence across various nations and regions. This article delves into the intriguing phenomenon of China's cropland migrating up to mountains and down to wetlands and analyses its spatiotemporal pattern evolution from 1990 to 2020.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!